diff options
author | Jan Aalmoes <jan.aalmoes@inria.fr> | 2024-07-27 18:19:39 +0200 |
---|---|---|
committer | Jan Aalmoes <jan.aalmoes@inria.fr> | 2024-07-27 18:19:39 +0200 |
commit | 5741f5dd69b5e43ab74989c094d262ce50f82a4c (patch) | |
tree | 86c7612e026ba214e8038435d7a7aeb334f47bcb | |
parent | 103677f1a14fe1aec281a69e5d68bbc72335dd9e (diff) |
introduction
-rw-r--r-- | biblio.bib | 169 | ||||
-rw-r--r-- | main.pdf | bin | 281248 -> 2461349 bytes | |||
-rw-r--r-- | main.tex | 105 |
3 files changed, 228 insertions, 46 deletions
diff --git a/biblio.bib b/biblio.bib new file mode 100644 index 0000000..d3e266c --- /dev/null +++ b/biblio.bib @@ -0,0 +1,169 @@ +@inproceedings{barthelemy:hal-01837361, + TITLE = {{Pl@ntNet, une plate-forme innovante d'agr{\'e}gation et partage d'observations botaniques}}, + AUTHOR = {Barth{\'e}l{\'e}my, Daniel and Boujemaa, Nozha and Molino, Jean-Fran{\c c}ois and Joly, Alexis and Go{\"e}au, Herv{\'e} and Baki{\'c}, Vera and Selmi, Souheil and Champ, Julien and Carre, Jennifer and Chouet, Mathias and Perronnet, Aur{\'e}lien and Vignau, Christelle and Dufour-Kowalski, Samuel and Affouard, Antoine and Barbe, Julien and Bonnet, Pierre}, + URL = {https://hal.science/hal-01837361}, + BOOKTITLE = {{International Conference ‘Botanists of the Twenty-first Century'}}, + ADDRESS = {Paris, France}, + ORGANIZATION = {{UNESCO}}, + HAL_LOCAL_REFERENCE = {DEVMP}, + EDITOR = {No{\"e}line R. Rakotoarisoa and Stephen Blackmore and Bernard Riera}, + PAGES = {191-197}, + YEAR = {2014}, + MONTH = Sep, + KEYWORDS = {Pl@ntNet ; Botany ; Plateforme participative ; Observations botaniques}, + PDF = {https://hal.science/hal-01837361/file/DB_etal_plantnet_plateforme_2016_1.pdf}, + HAL_ID = {hal-01837361}, + HAL_VERSION = {v1}, +} + +@misc{plantnet, + title={Pl@ntNet}, + howpublished={\url{https://identify.plantnet.org/}}, + note={Dernier accès: 2024-07-24} +} + + +@article{dunn2018wearables, + title={Wearables and the medical revolution}, + author={Dunn, Jessilyn and Runge, Ryan and Snyder, Michael}, + journal={Personalized medicine}, + volume={15}, + number={5}, + pages={429--448}, + year={2018}, + publisher={Taylor \& Francis} +} + +@misc{gtrend, + title={Google trend Intelligence Artificielle}, + howpublished={\url{https://trends.google.com/trends/explore?date=all&geo=FR&q=intelligence%20artificielle&hl=en-US}}, + note={Dernier accès: 2024-07-24} +} + +@misc{france2030, + title={France 2030}, + howpublished={\url{https://www.info.gouv.fr/grand-dossier/france-2030}}, + note={Dernier accès: 2024-07-24} +} + +@misc{stratfr, + title={La stratégie nationale pour l'intelligence artificielle}, + howpublished={\url{https://www.entreprises.gouv.fr/fr/numerique/enjeux/la-strategie-nationale-pour-l-ia}}, + note={Dernier accès: 2024-07-24} +} + +@misc{applewatch, + title={WatchOS 11 brings powerful health and fitness insights, and even more personalization and connectivity }, + howpublished={\url{https://www.apple.com/newsroom/2024/06/watchos-11-brings-powerful-health-and-fitness-insights/}}, + note={Dernier accès: 2024-07-24} +} + +%%%%%%%%%%%CLIMATE CHANGE BACKGROUND +@article{barnes2019viewing, + title={Viewing forced climate patterns through an AI lens}, + author={Barnes, Elizabeth A and Hurrell, James W and Ebert-Uphoff, Imme and Anderson, Chuck and Anderson, David}, + journal={Geophysical Research Letters}, + volume={46}, + number={22}, + pages={13389--13398}, + year={2019}, + publisher={Wiley Online Library} +} + +@article{slater2023hybrid, + title={Hybrid forecasting: blending climate predictions with AI models}, + author={Slater, Louise J and Arnal, Louise and Boucher, Marie-Am{\'e}lie and Chang, Annie Y-Y and Moulds, Simon and Murphy, Conor and Nearing, Grey and Shalev, Guy and Shen, Chaopeng and Speight, Linda and others}, + journal={Hydrology and earth system sciences}, + volume={27}, + number={9}, + pages={1865--1889}, + year={2023}, + publisher={Copernicus Publications G{\"o}ttingen, Germany} +} + +%%%%%%%%%%%%ENERGY BACKGROUND +@article{jin2020energy, + title={Energy and AI}, + author={Jin, Donghan and Ocone, Raffaella and Jiao, Kui and Xuan, Jin}, + journal={Energy and AI}, + volume={1}, + pages={100002}, + year={2020}, + publisher={Elsevier} +} + +@article{kumar2020distributed, + title={Distributed energy resources and the application of AI, IoT, and blockchain in smart grids}, + author={Kumar, Nallapaneni Manoj and Chand, Aneesh A and Malvoni, Maria and Prasad, Kushal A and Mamun, Kabir A and Islam, FR and Chopra, Shauhrat S}, + journal={Energies}, + volume={13}, + number={21}, + pages={5739}, + year={2020}, + publisher={MDPI} +} + +@article{kumari2020blockchain, + title={Blockchain and AI amalgamation for energy cloud management: Challenges, solutions, and future directions}, + author={Kumari, Aparna and Gupta, Rajesh and Tanwar, Sudeep and Kumar, Neeraj}, + journal={Journal of Parallel and Distributed Computing}, + volume={143}, + pages={148--166}, + year={2020}, + publisher={Elsevier} +} + +@article{ngarambe2020use, + title={The use of artificial intelligence (AI) methods in the prediction of thermal comfort in buildings: Energy implications of AI-based thermal comfort controls}, + author={Ngarambe, Jack and Yun, Geun Young and Santamouris, Mat}, + journal={Energy and Buildings}, + volume={211}, + pages={109807}, + year={2020}, + publisher={Elsevier} +} + + +%%%%%OPEN AI + +@misc{openaibfm, + title={OpenAI, cette société qui révolutionne l'intelligence artificielle}, + howpublished={\url{https://www.bfmtv.com/tech/intelligence-artificielle/open-ai-cette-societe-qui-revolutionne-l-intelligence-artificielle_DN-202311200564.html}}, + note={Dernier accès: 2024-07-24} +} + +@misc{openaiinter, + title={Intelligence artificielle : pourquoi Sam Altman, créateur de ChatGPT, a été débarqué d'OpenAI}, + howpublished={\url{https://www.radiofrance.fr/franceinter/ce-que-l-on-sait-du-renvoi-de-sam-altman-patron-d-openai-et-createur-de-chatgpt-5672369}}, + note={Dernier accès: 2024-07-24} +} + +@misc{openaint, + title={OpenAI Says It Has Begun Training a New Flagship A.I. Model}, + howpublished={\url{https://www.nytimes.com/2024/05/28/technology/openai-gpt4-new-model.html}}, + note={Dernier accès: 2024-07-24} +} + +@misc{openaibg, + title={ChatGPT sets record for fastest-growing user base - analyst note}, + howpublished={\url{https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/}}, + note={Dernier accès: 2024-07-24} +} + +@misc{gptjournal, + title={ChatGPT : le quotidien Le Monde signe un partenariat avec OpenAI, une première en France}, + howpublished={\url{https://www.radiofrance.fr/franceinter/podcasts/l-info-de-france-inter/les-doc-france-inter-du-jeudi-14-mars-3-7619379}}, + note={Dernier accès: 2024-07-24} +} + +@article{beraja2023ai, + title={AI-tocracy}, + author={Beraja, Martin and Kao, Andrew and Yang, David Y and Yuchtman, Noam}, + journal={The Quarterly Journal of Economics}, + volume={138}, + number={3}, + pages={1349--1402}, + year={2023}, + publisher={Oxford University Press} +} + Binary files differ@@ -6,13 +6,24 @@ \usepackage{amsmath} \usepackage{amsthm} \usepackage{amsfonts} +\usepackage{csquotes} \usepackage{algpseudocode} \usepackage{algorithm} \usepackage{subcaption} \usepackage{setspace} +\usepackage{tikz} +\usepackage{cite} +\usepackage{hyperref} +\usetikzlibrary {shapes.geometric} +\usetikzlibrary {shapes.symbols} + +%\input{aia/00macros} \input{theorem} +\input{tikz_assets/data} +\input{tikz_assets/param} + \begin{document} \begin{titlepage} \begin{center} @@ -37,78 +48,80 @@ \end{titlepage} \tableofcontents -\chapter{Contexte} +\chapter*{Avertissement} +\input{contexte/avertissement} +\chapter{Introduction} \section{Prédominances de l'apprentissage automatique} + \input{contexte/ml} \section{Bases legales} \input{contexte/legal} -\chapter{Ensembles et fonctions} +\chapter{Background} +\section{Ensembles et fonctions} -\chapter{Algèbre linéaire} - \section{Espace vectoriel} - \section{Application linéaires} - \section{Matrices} +\section{Algèbre linéaire} + \subsection{Espace vectoriel} + \subsection{Application linéaires} + \subsection{Matrices} -\chapter{Mesurer le hasard pour prédire et inférer} - \section{Théorie de la mesure} - \section{Probabilitées} - \section{Statistiques} +\section{Mesurer le hasard pour prédire et inférer} + \subsection{Théorie de la mesure} + \subsection{Probabilitées} + \subsection{Statistiques} -\chapter{Topologie} - \section{Distances et normes} - \section{Espaces topologiques} - \section{Application aux fonctions} +\section{Topologie} + \subsection{Distances et normes} + \subsection{Espaces topologiques} + \subsection{Application aux fonctions} -\chapter{Calcul différentiel} - \section{Différentiel} - \section{Gradient} +\section{Calcul différentiel} + \subsection{Différentiel} + \subsection{Gradient} -\chapter{Optimisation} - \section{Multiplicateurs de Lagrange} +\section{Optimisation} + \subsection{Multiplicateurs de Lagrange} - \section{Descente de gradient} - \subsection{Descente de gradient stochastique} + \subsection{Descente de gradient} + \subsubsection{Descente de gradient stochastique} - \subsection{Descente de gradient exponentiée} + \subsubsection{Descente de gradient exponentiée} -\chapter{Apprentissage automatique} - \section{Principe} - \section{Entraîner un modèle} - \subsection{Fonction de coût} - \section{Evaluer un modèle} - \subsection{Classification} - \subsubsection{La courbe ROC} - \subsubsection{La courbe de precision/recall} - \subsection{Regression} - \section{Décentralisation} - \subsection{Federated learning} +\section{Apprentissage automatique} + \subsection{Principe} + \subsection{Entraîner un modèle} + \subsubsection{Fonction de coût} + \subsection{Evaluer un modèle} + \subsubsection{Classification} + \paragraph{La courbe ROC} + \paragraph{La courbe de precision/recall} + \subsubsection{Regression} + \subsection{Décentralisation} + \subsubsection{Federated learning} -\chapter{Equitée} - \section{Différentes notions d'équitée} +\section{Equitée} + \subsection{Différentes notions d'équitée} - \section{Mitiger l'inéquitée} - \subsection{Preprocessing} - \subsection{Inprocessing} - \subsection{Postprocessing} + \subsection{Mitiger l'inéquitée} + \subsubsection{Preprocessing} + \subsubsection{Inprocessing} + \subsubsection{Postprocessing} \chapter{Classification finie} \input{classification_finie/finit_classif} \chapter{Attaque d'inférence d'attribut sensible} - \section{Le sur-apprentissage} - \section{Labels prédits} - \subsection{Liens entre inférence d'attribut sensible et équitée} +\input{aia/main} \section{Regression} \subsection{Equitée et regression} \subsubsection{Une bien-heureuse conséquence de l'\textit{adversarial debiasing}} -\chapter{Attaque d'appartenance} - \section{La sur-regression} - \section{Confidentialitée différentielle} - \section{Comment l'inprocessing peut faciliter la sur-regression} +\chapter{Données synthétiques} +\input{synthetic/main} +\bibliographystyle{plain} +\bibliography{biblio} \end{document} |