summaryrefslogtreecommitdiff
path: root/synthetic/bck/biblio.bib
diff options
context:
space:
mode:
Diffstat (limited to 'synthetic/bck/biblio.bib')
-rw-r--r--synthetic/bck/biblio.bib196
1 files changed, 196 insertions, 0 deletions
diff --git a/synthetic/bck/biblio.bib b/synthetic/bck/biblio.bib
new file mode 100644
index 0000000..fa524ee
--- /dev/null
+++ b/synthetic/bck/biblio.bib
@@ -0,0 +1,196 @@
+@misc{song2020overlearning,
+ title={Overlearning Reveals Sensitive Attributes},
+ author={Congzheng Song and Vitaly Shmatikov},
+ year={2020},
+ eprint={1905.11742},
+ archivePrefix={arXiv},
+ primaryClass={cs.LG}
+}
+
+@article{EO,
+ author = {Moritz Hardt and
+ Eric Price and
+ Nathan Srebro},
+ title = {Equality of Opportunity in Supervised Learning},
+ journal = {CoRR},
+ volume = {abs/1610.02413},
+ year = {2016},
+ url = {http://arxiv.org/abs/1610.02413},
+ eprinttype = {arXiv},
+ eprint = {1610.02413},
+ timestamp = {Tue, 26 Apr 2022 09:17:17 +0200},
+ biburl = {https://dblp.org/rec/journals/corr/HardtPS16.bib},
+ bibsource = {dblp computer science bibliography, https://dblp.org}
+}
+
+@article{hawkins2004problem,
+ title={The problem of overfitting},
+ author={Hawkins, Douglas M},
+ journal={Journal of chemical information and computer sciences},
+ volume={44},
+ number={1},
+ pages={1--12},
+ year={2004},
+ publisher={ACS Publications}
+}
+
+@misc{yeom,
+ title={Privacy Risk in Machine Learning: Analyzing the Connection to Overfitting},
+ author={Samuel Yeom and Irene Giacomelli and Matt Fredrikson and Somesh Jha},
+ year={2018},
+ eprint={1709.01604},
+ archivePrefix={arXiv},
+ primaryClass={cs.CR}
+}
+
+@misc{vgg16,
+ title={Very Deep Convolutional Networks for Large-Scale Image Recognition},
+ author={Karen Simonyan and Andrew Zisserman},
+ year={2015},
+ eprint={1409.1556},
+ archivePrefix={arXiv},
+ primaryClass={cs.CV},
+ url={https://arxiv.org/abs/1409.1556},
+}
+@misc{CGAN,
+ title={Conditional Generative Adversarial Nets},
+ author={Mehdi Mirza and Simon Osindero},
+ year={2014},
+ eprint={1411.1784},
+ archivePrefix={arXiv},
+ primaryClass={cs.LG},
+ url={https://arxiv.org/abs/1411.1784},
+}
+@ARTICLE{cnn,
+
+ author={Rawat, Waseem and Wang, Zenghui},
+
+ journal={Neural Computation},
+
+ title={Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review},
+
+ year={2017},
+
+ volume={29},
+
+ number={9},
+
+ pages={2352-2449},
+
+ keywords={},
+
+ doi={10.1162/neco_a_00990}}
+
+@misc{dcgan,
+ title={Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks},
+ author={Alec Radford and Luke Metz and Soumith Chintala},
+ year={2016},
+ eprint={1511.06434},
+ archivePrefix={arXiv},
+ primaryClass={cs.LG},
+ url={https://arxiv.org/abs/1511.06434}
+}
+@inproceedings{gan,
+author = {Goodfellow, Ian J. and Pouget-Abadie, Jean and Mirza, Mehdi and Xu, Bing and Warde-Farley, David and Ozair, Sherjil and Courville, Aaron and Bengio, Yoshua},
+title = {Generative adversarial nets},
+year = {2014},
+publisher = {MIT Press},
+address = {Cambridge, MA, USA},
+booktitle = {Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2},
+pages = {2672–2680},
+numpages = {9},
+location = {Montreal, Canada},
+series = {NIPS'14}
+}
+@misc{ctgan,
+ title={Modeling Tabular data using Conditional GAN},
+ author={Lei Xu and Maria Skoularidou and Alfredo Cuesta-Infante and Kalyan Veeramachaneni},
+ year={2019},
+ eprint={1907.00503},
+ archivePrefix={arXiv},
+ primaryClass={cs.LG},
+ url={https://arxiv.org/abs/1907.00503},
+}
+@article{bellovin2019privacy,
+ title={Privacy and synthetic datasets},
+ author={Bellovin, Steven M and Dutta, Preetam K and Reitinger, Nathan},
+ journal={Stan. Tech. L. Rev.},
+ volume={22},
+ pages={1},
+ year={2019},
+ publisher={HeinOnline}
+}
+
+@inproceedings{ping2017datasynthesizer,
+ title={Datasynthesizer: Privacy-preserving synthetic datasets},
+ author={Ping, Haoyue and Stoyanovich, Julia and Howe, Bill},
+ booktitle={Proceedings of the 29th International Conference on Scientific and Statistical Database Management},
+ pages={1--5},
+ year={2017}
+}
+
+@inproceedings{kuppa2021towards,
+ title={Towards improving privacy of synthetic datasets},
+ author={Kuppa, Aditya and Aouad, Lamine and Le-Khac, Nhien-An},
+ booktitle={Annual Privacy Forum},
+ pages={106--119},
+ year={2021},
+ organization={Springer}
+}
+
+@article{tai2023user,
+ title={User-Driven Synthetic Dataset Generation with Quantifiable Differential Privacy},
+ author={Tai, Bo-Chen and Tsou, Yao-Tung and Li, Szu-Chuang and Huang, Yennun and Tsai, Pei-Yuan and Tsai, Yu-Cheng},
+ journal={IEEE Transactions on Services Computing},
+ year={2023},
+ publisher={IEEE}
+}
+@article{stadler2020synthetic,
+ title={Synthetic data-A privacy mirage},
+ author={Stadler, Theresa and Oprisanu, Bristena and Troncoso, Carmela},
+ journal={arXiv preprint arXiv:2011.07018},
+ year={2020},
+ publisher={Nov}
+}
+
+@inproceedings{jordon2021hide,
+ title={Hide-and-seek privacy challenge: Synthetic data generation vs. patient re-identification},
+ author={Jordon, James and Jarrett, Daniel and Saveliev, Evgeny and Yoon, Jinsung and Elbers, Paul and Thoral, Patrick and Ercole, Ari and Zhang, Cheng and Belgrave, Danielle and van der Schaar, Mihaela},
+ booktitle={NeurIPS 2020 Competition and Demonstration Track},
+ pages={206--215},
+ year={2021},
+ organization={PMLR}
+}
+
+@inproceedings{abadi2016deep,
+ title={Deep learning with differential privacy},
+ author={Abadi, Martin and Chu, Andy and Goodfellow, Ian and McMahan, H Brendan and Mironov, Ilya and Talwar, Kunal and Zhang, Li},
+ booktitle={Proceedings of the 2016 ACM SIGSAC conference on computer and communications security},
+ pages={308--318},
+ year={2016}
+}
+
+@inproceedings{shokri2017membership,
+ title={Membership inference attacks against machine learning models},
+ author={Shokri, Reza and Stronati, Marco and Song, Congzheng and Shmatikov, Vitaly},
+ booktitle={2017 IEEE symposium on security and privacy (SP)},
+ pages={3--18},
+ year={2017},
+ organization={IEEE}
+}
+
+@article{ding2021retiring,
+ title={Retiring Adult: New Datasets for Fair Machine Learning},
+ author={Ding, Frances and Hardt, Moritz and Miller, John and Schmidt, Ludwig},
+ journal={Advances in Neural Information Processing Systems},
+ volume={34},
+ year={2021}
+}
+
+@inproceedings{zhifei2017cvpr,
+ title={Age Progression/Regression by Conditional Adversarial Autoencoder},
+ author={Zhang, Zhifei and Song, Yang and Qi, Hairong},
+ booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
+ year={2017},
+ organization={IEEE}
+}