diff options
Diffstat (limited to 'synthetic/bck/main.bbl')
-rw-r--r-- | synthetic/bck/main.bbl | 98 |
1 files changed, 98 insertions, 0 deletions
diff --git a/synthetic/bck/main.bbl b/synthetic/bck/main.bbl new file mode 100644 index 0000000..f80a3d9 --- /dev/null +++ b/synthetic/bck/main.bbl @@ -0,0 +1,98 @@ +\begin{thebibliography}{10} + +\bibitem{abadi2016deep} +Martin Abadi, Andy Chu, Ian Goodfellow, H~Brendan McMahan, Ilya Mironov, Kunal + Talwar, and Li~Zhang. +\newblock Deep learning with differential privacy. +\newblock In {\em Proceedings of the 2016 ACM SIGSAC conference on computer and + communications security}, pages 308--318, 2016. + +\bibitem{bellovin2019privacy} +Steven~M Bellovin, Preetam~K Dutta, and Nathan Reitinger. +\newblock Privacy and synthetic datasets. +\newblock {\em Stan. Tech. L. Rev.}, 22:1, 2019. + +\bibitem{ding2021retiring} +Frances Ding, Moritz Hardt, John Miller, and Ludwig Schmidt. +\newblock Retiring adult: New datasets for fair machine learning. +\newblock {\em Advances in Neural Information Processing Systems}, 34, 2021. + +\bibitem{gan} +Ian~J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David + Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. +\newblock Generative adversarial nets. +\newblock In {\em Proceedings of the 27th International Conference on Neural + Information Processing Systems - Volume 2}, NIPS'14, page 2672–2680, + Cambridge, MA, USA, 2014. MIT Press. + +\bibitem{EO} +Moritz Hardt, Eric Price, and Nathan Srebro. +\newblock Equality of opportunity in supervised learning. +\newblock {\em CoRR}, abs/1610.02413, 2016. + +\bibitem{hawkins2004problem} +Douglas~M Hawkins. +\newblock The problem of overfitting. +\newblock {\em Journal of chemical information and computer sciences}, + 44(1):1--12, 2004. + +\bibitem{jordon2021hide} +James Jordon, Daniel Jarrett, Evgeny Saveliev, Jinsung Yoon, Paul Elbers, + Patrick Thoral, Ari Ercole, Cheng Zhang, Danielle Belgrave, and Mihaela + van~der Schaar. +\newblock Hide-and-seek privacy challenge: Synthetic data generation vs. + patient re-identification. +\newblock In {\em NeurIPS 2020 Competition and Demonstration Track}, pages + 206--215. PMLR, 2021. + +\bibitem{cgan} +Mehdi Mirza and Simon Osindero. +\newblock Conditional generative adversarial nets, 2014. + +\bibitem{dcgan} +Alec Radford, Luke Metz, and Soumith Chintala. +\newblock Unsupervised representation learning with deep convolutional + generative adversarial networks, 2016. + +\bibitem{cnn} +Waseem Rawat and Zenghui Wang. +\newblock Deep convolutional neural networks for image classification: A + comprehensive review. +\newblock {\em Neural Computation}, 29(9):2352--2449, 2017. + +\bibitem{shokri2017membership} +Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. +\newblock Membership inference attacks against machine learning models. +\newblock In {\em 2017 IEEE symposium on security and privacy (SP)}, pages + 3--18. IEEE, 2017. + +\bibitem{vgg16} +Karen Simonyan and Andrew Zisserman. +\newblock Very deep convolutional networks for large-scale image recognition, + 2015. + +\bibitem{song2020overlearning} +Congzheng Song and Vitaly Shmatikov. +\newblock Overlearning reveals sensitive attributes, 2020. + +\bibitem{stadler2020synthetic} +Theresa Stadler, Bristena Oprisanu, and Carmela Troncoso. +\newblock Synthetic data-a privacy mirage. +\newblock {\em arXiv preprint arXiv:2011.07018}, 2020. + +\bibitem{ctgan} +Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. +\newblock Modeling tabular data using conditional gan, 2019. + +\bibitem{yeom} +Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. +\newblock Privacy risk in machine learning: Analyzing the connection to + overfitting, 2018. + +\bibitem{zhifei2017cvpr} +Zhifei Zhang, Yang Song, and Hairong Qi. +\newblock Age progression/regression by conditional adversarial autoencoder. +\newblock In {\em IEEE Conference on Computer Vision and Pattern Recognition + (CVPR)}. IEEE, 2017. + +\end{thebibliography} |