\begin{theorem} \label{th:dpgood} Maximum attack accuracy achievable by \aia in \ref{tm:hard} is equal to $\frac{1}{2}(1+\text{\demparlevel of }\targetmodel)$. \end{theorem} \begin{proof} The set $B$ of function from $\{0,1\}$ to $\{0,1\}$ contains four elements: $b_0=0$, $b_1=id$, $b_2=1-id$ and $b,3=1$, where $\forall x, id(x) = x$. For every $b\in B$ the balanced \aia accuracy is $BA(b) = \frac{1}{2}(P(b\circ \hat{Y}=0|S=0) + P(b\circ \hat{Y}=1|S=1))$. We have $BA(b_0) = BA(b_3) = \frac{1}{2}$, hence, we can discard those elements when solving the attack optimisation problem. This problem writes $\text{max}_{b\in B}B(A(b)) = \text{max}(BA(b_1), BA(b_2))$. We remark that $b_1\circ \hat{Y}=\hat{Y}$ and $b_2\circ \hat{Y}=1 - \hat{Y}$. Hence, {\footnotesize \begin{align*} BA(b_1) &= \frac{1}{2}(P(\hat{Y}=0|S=0) + P(\hat{Y}=1|S=1))\\ &=\frac{1}{2}(1+P(\hat{Y}=1|S=1) - P(\hat{Y}=1|S=0))\\ BA(b_2)&=\frac{1}{2}(1+P(\hat{Y}=1|S=0) - P(\hat{Y}=1|S=1)) \end{align*} } Thus, {\footnotesize \begin{align*} &\text{max}_{b\in B}BA(b) = \frac{1}{2}\left(1+\text{max}\left( \begin{matrix} P(\hat{Y}=0|S=0) -P(\hat{Y}=1|S=1)\\ P(\hat{Y}=1|S=0) -P(\hat{Y}=0|S=1) \end{matrix} \right)\right)\\ =&\frac{1}{2}(1+|P(\hat{Y}=1|S=1) - P(\hat{Y}=1|S=0)|) \end{align*} } \end{proof}