\begin{theorem} \label{th:eoo} If $\hat{Y}$ satisfies \eo for $Y$ and $S$ then the balanced accuracy of \aia in \ref{tm:hard} is $\frac{1}{2}$ iff $Y$ is independent of $S$ or $\hat{Y}$ is independent of $Y$. \end{theorem} \begin{proof} Let $\attackmodel$ be the attack model trained for AS: $\hat{S}=a\circ \hat{Y}$. By the total probability formula {\footnotesize \begin{align*} P(\hat{S}=0|S=0)=&P(\hat{S}=0|S=0Y=0)P(Y=0|S=0)\\ +&P(\hat{S}=0|S=0Y=1)P(Y=1|S=0) \end{align*} } and as well {\footnotesize \begin{align*} P(\hat{S}=1|S=1)=&P(\hat{S}=1|S=1Y=0)P(Y=0|S=1)\\ +&P(\hat{S}=1|S=1Y=1)P(Y=1|S=1) \end{align*} } Then we substitute those terms in the definition of the balanced accuracy of $\targetmodel$. {\footnotesize \begin{align*} &\frac{P(\hat{S}=0|S=0)+P(\hat{S}=1|S=1)}{2}\\ =&\frac{1}{2}+\frac{1}{2}\left(P(Y=0|S=0)-P(Y=0|S=1)\right)\\ &\left(P(\hat{Y}\in \attackmodel^{-1}(\{1\})|S=1Y=0) - P(\hat{Y}\in \attackmodel^{-1}(\{1\})|S=1Y=1)\right) \end{align*} } The balanced accuracy is equal to 0.5 if and only if $P(Y=0|S=0)=P(Y=0|S=1)$ or $\forall \attackmodel~P(\hat{Y}\in \attackmodel^{-1}(\{1\})|S=1Y=0)=P(\hat{Y}\in \attackmodel^{-1}(\{1\})|S=1Y=1)$. The first term indicates that $Y$ is independent of $S$ and the second term indicates that $S=1$ the $\targetmodel$ random guess utility. We can do the same computing for $S=0$ and obtain a similar conclusion. \end{proof}