\begin{table}[!htb] %\vspace{-3mm} \caption{\adaptiveAIAHard and \adaptiveAIASoft outperform their respective baselines. We report attack accuracy over ten runs.} \begin{center} %\footnotesize \scriptsize \begin{tabular}{ l | c | c } \hline \rowcolor{LightCyan} & \multicolumn{2}{c}{\ref{tm:hard}}\\ \rowcolor{LightCyan} \textbf{Dataset} & \textbf{Baseline ($\upsilon$=0.50)} & \textbf{\adaptiveAIAHard}\\ \rowcolor{LightCyan} & \textbf{\race} | \textbf{\sex}& \textbf{\race} | \textbf{\sex}\\ \textbf{\census} & 0.50 $\pm$ 0.00 | 0.50 $\pm$ 0.00& \textbf{0.56 $\pm$ 0.01} | \textbf{0.58 $\pm$ 0.01} \\ \textbf{\compas}& \textbf{0.62 $\pm$ 0.03} | 0.50 $\pm$ 0.00& \textbf{0.62 $\pm$ 0.03} | \textbf{0.57 $\pm$ 0.03} \\ \textbf{\meps} & 0.51 $\pm$ 0.01 | \textbf{0.55 $\pm$ 0.02} & \textbf{0.53 $\pm$ 0.01} | \textbf{0.55 $\pm$ 0.01} \\ \textbf{\lfw} & 0.59 $\pm$ 0.00 | 0.64 $\pm$ 0.15& \textbf{0.61 $\pm$ 0.11} | \textbf{0.78 $\pm$ 0.05} \\ \hline \rowcolor{LightCyan} & \multicolumn{2}{c}{\ref{tm:soft}} \\ \rowcolor{LightCyan} \textbf{Dataset} & \textbf{Baseline ($\upsilon$=0.50)} & \textbf{\adaptiveAIASoft} \\ \rowcolor{LightCyan} & \textbf{\race} | \textbf{\sex} & \textbf{\race} | \textbf{\sex}\\ \hline \textbf{\census}& 0.50 $\pm$ 0.02 | 0.56 $\pm$ 0.04 & \textbf{0.61 $\pm$ 0.02} | \textbf{0.68 $\pm$ 0.01} \\ \textbf{\compas}& \textbf{0.62 $\pm$ 0.03} | 0.50 $\pm$ 0.00 & \textbf{0.62 $\pm$ 0.03} | \textbf{0.57 $\pm$ 0.03} \\ \textbf{\meps} & 0.52 $\pm$ 0.02 | 0.55 $\pm$ 0.02 & \textbf{0.60 $\pm$ 0.02} | \textbf{0.62 $\pm$ 0.02}\\ \textbf{\lfw} & 0.50 $\pm$ 0.10 | \textbf{0.77 $\pm$ 0.07} & \textbf{0.61 $\pm$ 0.10} | \textbf{0.79 $\pm$ 0.05}\\ \hline \end{tabular} \end{center} \label{tab:global_threshold_withoutsattr} %\vspace{-5mm} \end{table}