\begin{thebibliography}{10} \bibitem{abadi2016deep} Martin Abadi, Andy Chu, Ian Goodfellow, H~Brendan McMahan, Ilya Mironov, Kunal Talwar, and Li~Zhang. \newblock Deep learning with differential privacy. \newblock In {\em Proceedings of the 2016 ACM SIGSAC conference on computer and communications security}, pages 308--318, 2016. \bibitem{bellovin2019privacy} Steven~M Bellovin, Preetam~K Dutta, and Nathan Reitinger. \newblock Privacy and synthetic datasets. \newblock {\em Stan. Tech. L. Rev.}, 22:1, 2019. \bibitem{ding2021retiring} Frances Ding, Moritz Hardt, John Miller, and Ludwig Schmidt. \newblock Retiring adult: New datasets for fair machine learning. \newblock {\em Advances in Neural Information Processing Systems}, 34, 2021. \bibitem{gan} Ian~J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. \newblock Generative adversarial nets. \newblock In {\em Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2}, NIPS'14, page 2672–2680, Cambridge, MA, USA, 2014. MIT Press. \bibitem{EO} Moritz Hardt, Eric Price, and Nathan Srebro. \newblock Equality of opportunity in supervised learning. \newblock {\em CoRR}, abs/1610.02413, 2016. \bibitem{hawkins2004problem} Douglas~M Hawkins. \newblock The problem of overfitting. \newblock {\em Journal of chemical information and computer sciences}, 44(1):1--12, 2004. \bibitem{jordon2021hide} James Jordon, Daniel Jarrett, Evgeny Saveliev, Jinsung Yoon, Paul Elbers, Patrick Thoral, Ari Ercole, Cheng Zhang, Danielle Belgrave, and Mihaela van~der Schaar. \newblock Hide-and-seek privacy challenge: Synthetic data generation vs. patient re-identification. \newblock In {\em NeurIPS 2020 Competition and Demonstration Track}, pages 206--215. PMLR, 2021. \bibitem{cgan} Mehdi Mirza and Simon Osindero. \newblock Conditional generative adversarial nets, 2014. \bibitem{dcgan} Alec Radford, Luke Metz, and Soumith Chintala. \newblock Unsupervised representation learning with deep convolutional generative adversarial networks, 2016. \bibitem{cnn} Waseem Rawat and Zenghui Wang. \newblock Deep convolutional neural networks for image classification: A comprehensive review. \newblock {\em Neural Computation}, 29(9):2352--2449, 2017. \bibitem{shokri2017membership} Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. \newblock Membership inference attacks against machine learning models. \newblock In {\em 2017 IEEE symposium on security and privacy (SP)}, pages 3--18. IEEE, 2017. \bibitem{vgg16} Karen Simonyan and Andrew Zisserman. \newblock Very deep convolutional networks for large-scale image recognition, 2015. \bibitem{song2020overlearning} Congzheng Song and Vitaly Shmatikov. \newblock Overlearning reveals sensitive attributes, 2020. \bibitem{stadler2020synthetic} Theresa Stadler, Bristena Oprisanu, and Carmela Troncoso. \newblock Synthetic data-a privacy mirage. \newblock {\em arXiv preprint arXiv:2011.07018}, 2020. \bibitem{ctgan} Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. \newblock Modeling tabular data using conditional gan, 2019. \bibitem{yeom} Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. \newblock Privacy risk in machine learning: Analyzing the connection to overfitting, 2018. \bibitem{zhifei2017cvpr} Zhifei Zhang, Yang Song, and Hairong Qi. \newblock Age progression/regression by conditional adversarial autoencoder. \newblock In {\em IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}. IEEE, 2017. \end{thebibliography}