@misc{carlini2022membershipinferenceattacksprinciples, title={Membership Inference Attacks From First Principles}, author={Nicholas Carlini and Steve Chien and Milad Nasr and Shuang Song and Andreas Terzis and Florian Tramer}, year={2022}, eprint={2112.03570}, archivePrefix={arXiv}, primaryClass={cs.CR}, url={https://arxiv.org/abs/2112.03570}, } @article{brayne2015predictive, title={Predictive policing}, author={Brayne, Sarah and Rosenblat, Alex and Boyd, Danah}, journal={Data \& Civil Rights: A New Era Of Policing And Justice}, pages={2015--1027}, year={2015} } @inproceedings{barthelemy:hal-01837361, TITLE = {{Pl@ntNet, une plate-forme innovante d'agr{\'e}gation et partage d'observations botaniques}}, AUTHOR = {Barth{\'e}l{\'e}my, Daniel and Boujemaa, Nozha and Molino, Jean-Fran{\c c}ois and Joly, Alexis and Go{\"e}au, Herv{\'e} and Baki{\'c}, Vera and Selmi, Souheil and Champ, Julien and Carre, Jennifer and Chouet, Mathias and Perronnet, Aur{\'e}lien and Vignau, Christelle and Dufour-Kowalski, Samuel and Affouard, Antoine and Barbe, Julien and Bonnet, Pierre}, URL = {https://hal.science/hal-01837361}, BOOKTITLE = {{International Conference ‘Botanists of the Twenty-first Century'}}, ADDRESS = {Paris, France}, ORGANIZATION = {{UNESCO}}, HAL_LOCAL_REFERENCE = {DEVMP}, EDITOR = {No{\"e}line R. Rakotoarisoa and Stephen Blackmore and Bernard Riera}, PAGES = {191-197}, YEAR = {2014}, MONTH = Sep, KEYWORDS = {Pl@ntNet ; Botany ; Plateforme participative ; Observations botaniques}, PDF = {https://hal.science/hal-01837361/file/DB_etal_plantnet_plateforme_2016_1.pdf}, HAL_ID = {hal-01837361}, HAL_VERSION = {v1}, } @misc{plantnet, title={Pl@ntNet}, howpublished={\url{https://identify.plantnet.org/}}, note={Dernier accès: 2024-07-24} } @article{dunn2018wearables, title={Wearables and the medical revolution}, author={Dunn, Jessilyn and Runge, Ryan and Snyder, Michael}, journal={Personalized medicine}, volume={15}, number={5}, pages={429--448}, year={2018}, publisher={Taylor \& Francis} } @misc{gtrend, title={Google trend Intelligence Artificielle}, howpublished={\url{https://trends.google.com/trends/explore?date=all&geo=FR&q=intelligence%20artificielle&hl=en-US}}, note={Dernier accès: 2024-07-24} } @misc{france2030, title={France 2030}, howpublished={\url{https://www.info.gouv.fr/grand-dossier/france-2030}}, note={Dernier accès: 2024-07-24} } @misc{stratfr, title={La stratégie nationale pour l'intelligence artificielle}, howpublished={\url{https://www.entreprises.gouv.fr/fr/numerique/enjeux/la-strategie-nationale-pour-l-ia}}, note={Dernier accès: 2024-07-24} } @misc{applewatch, title={WatchOS 11 brings powerful health and fitness insights, and even more personalization and connectivity }, howpublished={\url{https://www.apple.com/newsroom/2024/06/watchos-11-brings-powerful-health-and-fitness-insights/}}, note={Dernier accès: 2024-07-24} } %%%%%%%%%%%CLIMATE CHANGE BACKGROUND @article{barnes2019viewing, title={Viewing forced climate patterns through an AI lens}, author={Barnes, Elizabeth A and Hurrell, James W and Ebert-Uphoff, Imme and Anderson, Chuck and Anderson, David}, journal={Geophysical Research Letters}, volume={46}, number={22}, pages={13389--13398}, year={2019}, publisher={Wiley Online Library} } @article{slater2023hybrid, title={Hybrid forecasting: blending climate predictions with AI models}, author={Slater, Louise J and Arnal, Louise and Boucher, Marie-Am{\'e}lie and Chang, Annie Y-Y and Moulds, Simon and Murphy, Conor and Nearing, Grey and Shalev, Guy and Shen, Chaopeng and Speight, Linda and others}, journal={Hydrology and earth system sciences}, volume={27}, number={9}, pages={1865--1889}, year={2023}, publisher={Copernicus Publications G{\"o}ttingen, Germany} } %%%%%%%%%%%%ENERGY BACKGROUND @article{jin2020energy, title={Energy and AI}, author={Jin, Donghan and Ocone, Raffaella and Jiao, Kui and Xuan, Jin}, journal={Energy and AI}, volume={1}, pages={100002}, year={2020}, publisher={Elsevier} } @article{kumar2020distributed, title={Distributed energy resources and the application of AI, IoT, and blockchain in smart grids}, author={Kumar, Nallapaneni Manoj and Chand, Aneesh A and Malvoni, Maria and Prasad, Kushal A and Mamun, Kabir A and Islam, FR and Chopra, Shauhrat S}, journal={Energies}, volume={13}, number={21}, pages={5739}, year={2020}, publisher={MDPI} } @article{kumari2020blockchain, title={Blockchain and AI amalgamation for energy cloud management: Challenges, solutions, and future directions}, author={Kumari, Aparna and Gupta, Rajesh and Tanwar, Sudeep and Kumar, Neeraj}, journal={Journal of Parallel and Distributed Computing}, volume={143}, pages={148--166}, year={2020}, publisher={Elsevier} } @article{ngarambe2020use, title={The use of artificial intelligence (AI) methods in the prediction of thermal comfort in buildings: Energy implications of AI-based thermal comfort controls}, author={Ngarambe, Jack and Yun, Geun Young and Santamouris, Mat}, journal={Energy and Buildings}, volume={211}, pages={109807}, year={2020}, publisher={Elsevier} } %%%%%OPEN AI @misc{openaibfm, title={OpenAI, cette société qui révolutionne l'intelligence artificielle}, howpublished={\url{https://www.bfmtv.com/tech/intelligence-artificielle/open-ai-cette-societe-qui-revolutionne-l-intelligence-artificielle_DN-202311200564.html}}, note={Dernier accès: 2024-07-24} } @misc{openaiinter, title={Intelligence artificielle : pourquoi Sam Altman, créateur de ChatGPT, a été débarqué d'OpenAI}, howpublished={\url{https://www.radiofrance.fr/franceinter/ce-que-l-on-sait-du-renvoi-de-sam-altman-patron-d-openai-et-createur-de-chatgpt-5672369}}, note={Dernier accès: 2024-07-24} } @misc{openaint, title={OpenAI Says It Has Begun Training a New Flagship A.I. Model}, howpublished={\url{https://www.nytimes.com/2024/05/28/technology/openai-gpt4-new-model.html}}, note={Dernier accès: 2024-07-24} } @misc{openaibg, title={ChatGPT sets record for fastest-growing user base - analyst note}, howpublished={\url{https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/}}, note={Dernier accès: 2024-07-24} } @misc{gptjournal, title={ChatGPT : le quotidien Le Monde signe un partenariat avec OpenAI, une première en France}, howpublished={\url{https://www.radiofrance.fr/franceinter/podcasts/l-info-de-france-inter/les-doc-france-inter-du-jeudi-14-mars-3-7619379}}, note={Dernier accès: 2024-07-24} } @article{beraja2023ai, title={AI-tocracy}, author={Beraja, Martin and Kao, Andrew and Yang, David Y and Yuchtman, Noam}, journal={The Quarterly Journal of Economics}, volume={138}, number={3}, pages={1349--1402}, year={2023}, publisher={Oxford University Press} } @misc{song2020overlearning, title={Overlearning Reveals Sensitive Attributes}, author={Congzheng Song and Vitaly Shmatikov}, year={2020}, eprint={1905.11742}, archivePrefix={arXiv}, primaryClass={cs.LG} } @article{EO, author = {Moritz Hardt and Eric Price and Nathan Srebro}, title = {Equality of Opportunity in Supervised Learning}, journal = {CoRR}, volume = {abs/1610.02413}, year = {2016}, url = {http://arxiv.org/abs/1610.02413}, eprinttype = {arXiv}, eprint = {1610.02413}, timestamp = {Tue, 26 Apr 2022 09:17:17 +0200}, biburl = {https://dblp.org/rec/journals/corr/HardtPS16.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } @article{hawkins2004problem, title={The problem of overfitting}, author={Hawkins, Douglas M}, journal={Journal of chemical information and computer sciences}, volume={44}, number={1}, pages={1--12}, year={2004}, publisher={ACS Publications} } @misc{yeom, title={Privacy Risk in Machine Learning: Analyzing the Connection to Overfitting}, author={Samuel Yeom and Irene Giacomelli and Matt Fredrikson and Somesh Jha}, year={2018}, eprint={1709.01604}, archivePrefix={arXiv}, primaryClass={cs.CR} } @misc{vgg16, title={Very Deep Convolutional Networks for Large-Scale Image Recognition}, author={Karen Simonyan and Andrew Zisserman}, year={2015}, eprint={1409.1556}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/1409.1556}, } @misc{CGAN, title={Conditional Generative Adversarial Nets}, author={Mehdi Mirza and Simon Osindero}, year={2014}, eprint={1411.1784}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/1411.1784}, } @ARTICLE{cnn, author={Rawat, Waseem and Wang, Zenghui}, journal={Neural Computation}, title={Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review}, year={2017}, volume={29}, number={9}, pages={2352-2449}, keywords={}, doi={10.1162/neco_a_00990}} @misc{dcgan, title={Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks}, author={Alec Radford and Luke Metz and Soumith Chintala}, year={2016}, eprint={1511.06434}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/1511.06434} } @inproceedings{gan, author = {Goodfellow, Ian J. and Pouget-Abadie, Jean and Mirza, Mehdi and Xu, Bing and Warde-Farley, David and Ozair, Sherjil and Courville, Aaron and Bengio, Yoshua}, title = {Generative adversarial nets}, year = {2014}, publisher = {MIT Press}, address = {Cambridge, MA, USA}, booktitle = {Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2}, pages = {2672–2680}, numpages = {9}, location = {Montreal, Canada}, series = {NIPS'14} } @misc{ctgan, title={Modeling Tabular data using Conditional GAN}, author={Lei Xu and Maria Skoularidou and Alfredo Cuesta-Infante and Kalyan Veeramachaneni}, year={2019}, eprint={1907.00503}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/1907.00503}, } @article{bellovin2019privacy, title={Privacy and synthetic datasets}, author={Bellovin, Steven M and Dutta, Preetam K and Reitinger, Nathan}, journal={Stan. Tech. L. Rev.}, volume={22}, pages={1}, year={2019}, publisher={HeinOnline} } @inproceedings{ping2017datasynthesizer, title={Datasynthesizer: Privacy-preserving synthetic datasets}, author={Ping, Haoyue and Stoyanovich, Julia and Howe, Bill}, booktitle={Proceedings of the 29th International Conference on Scientific and Statistical Database Management}, pages={1--5}, year={2017} } @inproceedings{kuppa2021towards, title={Towards improving privacy of synthetic datasets}, author={Kuppa, Aditya and Aouad, Lamine and Le-Khac, Nhien-An}, booktitle={Annual Privacy Forum}, pages={106--119}, year={2021}, organization={Springer} } @article{tai2023user, title={User-Driven Synthetic Dataset Generation with Quantifiable Differential Privacy}, author={Tai, Bo-Chen and Tsou, Yao-Tung and Li, Szu-Chuang and Huang, Yennun and Tsai, Pei-Yuan and Tsai, Yu-Cheng}, journal={IEEE Transactions on Services Computing}, year={2023}, publisher={IEEE} } @article{stadler2020synthetic, title={Synthetic data-A privacy mirage}, author={Stadler, Theresa and Oprisanu, Bristena and Troncoso, Carmela}, journal={arXiv preprint arXiv:2011.07018}, year={2020}, publisher={Nov} } @inproceedings{jordon2021hide, title={Hide-and-seek privacy challenge: Synthetic data generation vs. patient re-identification}, author={Jordon, James and Jarrett, Daniel and Saveliev, Evgeny and Yoon, Jinsung and Elbers, Paul and Thoral, Patrick and Ercole, Ari and Zhang, Cheng and Belgrave, Danielle and van der Schaar, Mihaela}, booktitle={NeurIPS 2020 Competition and Demonstration Track}, pages={206--215}, year={2021}, organization={PMLR} } @inproceedings{abadi2016deep, title={Deep learning with differential privacy}, author={Abadi, Martin and Chu, Andy and Goodfellow, Ian and McMahan, H Brendan and Mironov, Ilya and Talwar, Kunal and Zhang, Li}, booktitle={Proceedings of the 2016 ACM SIGSAC conference on computer and communications security}, pages={308--318}, year={2016} } @inproceedings{shokri2017membership, title={Membership inference attacks against machine learning models}, author={Shokri, Reza and Stronati, Marco and Song, Congzheng and Shmatikov, Vitaly}, booktitle={2017 IEEE symposium on security and privacy (SP)}, pages={3--18}, year={2017}, organization={IEEE} } @article{ding2021retiring, title={Retiring Adult: New Datasets for Fair Machine Learning}, author={Ding, Frances and Hardt, Moritz and Miller, John and Schmidt, Ludwig}, journal={Advances in Neural Information Processing Systems}, volume={34}, year={2021} } @inproceedings{zhifei2017cvpr, title={Age Progression/Regression by Conditional Adversarial Autoencoder}, author={Zhang, Zhifei and Song, Yang and Qi, Hairong}, booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, year={2017}, organization={IEEE} }