summaryrefslogtreecommitdiff
path: root/aia/exp.tex
diff options
context:
space:
mode:
Diffstat (limited to 'aia/exp.tex')
-rw-r--r--aia/exp.tex106
1 files changed, 106 insertions, 0 deletions
diff --git a/aia/exp.tex b/aia/exp.tex
new file mode 100644
index 0000000..6651744
--- /dev/null
+++ b/aia/exp.tex
@@ -0,0 +1,106 @@
+{
+ \usebackgroundtemplate{\includegraphics[width=\paperwidth]{images/background/card/background.pdf}}
+\begin{frame}
+ %\vspace{70px}
+ \hspace{70px}
+ \begin{minipage}{250px}
+ \Large
+ \textcolor{accent}{
+ Evaluation expérimentale de l'utilisation de l'équitée comme mécanisme de protéction de l'attribut sensible.
+ }
+ \end{minipage}
+\end{frame}
+}
+\begin{frame}
+ \begin{figure}
+ \centering
+ \input{tikz/data}
+ \label{fig:aia-data}
+ \end{figure}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Experimental validation on prediction: results}
+ \begin{figure}
+ \captionsetup{singlelinecheck=off}
+ \centering
+ \begin{subfigure}{0.4\textwidth}
+ \centering
+ \scriptsize
+ \begin{itemize}
+ \item \emph{Labeled Faces in the Wild (images)}
+ \item ML = Convolutional Neural Network
+ \end{itemize}
+ \includegraphics[width=150px]{images/figures/advdebias/lfw/lfw_advdeb_attack_hard_sex.pdf}
+ \end{subfigure}
+ \hspace{0.1\textwidth}
+ \begin{subfigure}{0.4\textwidth}
+ \centering
+ \scriptsize
+ \begin{itemize}
+ \item \emph{COMPAS recidivism dataset (tabular)}
+ \item ML = Random Forest
+ \end{itemize}
+ \includegraphics[width=150px]{images/figures/advdebias/compas/compas_advdeb_attack_hard_sex.pdf}
+ \end{subfigure}
+ \end{figure}
+ \vspace{10px}
+
+ \scriptsize
+ \begin{tabular}{lll}
+ &\emph{Regularization}&\emph{Value}\\
+ \emph{Baseline}&None&Attack result\\
+ \emph{Theoretical}&Adversarial debiasing&$\frac{1}{2}(1+DemParLvl)$\\
+ \emph{Empirical}&Adversarial debiasing&Attack result\\
+ \end{tabular}
+\normalsize
+ \hspace{10px}
+Attack surface = $1_{[\tau,1]}\circ f\circ X$.
+\end{frame}
+
+\begin{frame}
+ \frametitle{Experimental validation on logit: building an attack}
+ \begin{enumerate}
+ \item On part.
+ \item Build a random forest on this dataset.
+ \item Ajust the threshold to take into account class imbalance.
+ \end{enumerate}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Experimental validation on logit: results}
+ \begin{figure}
+ \captionsetup{singlelinecheck=off}
+ \centering
+ \begin{subfigure}{0.4\textwidth}
+ \centering
+ \scriptsize
+ \begin{itemize}
+ \item \emph{Labeled Faces in the Wild (images)}
+ \item ML = Convolutional Neural Network
+ \end{itemize}
+ \includegraphics[width=150px]{images/figures/advdebias/lfw/lfw_advdeb_attack_soft_experimental_sex.pdf}
+ \end{subfigure}
+ \hspace{0.1\textwidth}
+ \begin{subfigure}{0.4\textwidth}
+ \centering
+ \scriptsize
+ \begin{itemize}
+ \item \emph{COMPAS recidivism dataset (tabular)}
+ \item ML = Random Forest
+ \end{itemize}
+ \includegraphics[width=150px]{images/figures/advdebias/compas/compas_advdeb_attack_soft_experimental_sex.pdf}
+ \end{subfigure}
+ \end{figure}
+ \vspace{10px}
+
+ \scriptsize
+ \begin{tabular}{lll}
+ &\emph{Regularization}&\emph{Value}\\
+ \emph{Baseline}&None&Attack result\\
+ \emph{AdvDebias}&Adversarial debiasing&Attack result\\
+ \end{tabular}
+\normalsize
+ \hspace{10px}
+Attack surface = $f\circ X$.
+\end{frame}