\begin{tikzpicture} \def \h{4} \node () at (0,1) {$Y=0$}; \node[rectangle,draw=bonus] (G0) at (0,0) {$\begin{matrix}\bigcirc&\bigcirc\\\bigcirc&\bigcirc\end{matrix}$}; \node () at (\h,1) {$Y=1$}; \node[rectangle,draw=bonus] (G1) at (\h,0){$\begin{matrix}\bigcirc&\bigcirc&\bigtriangleup\\&\bigcirc&\bigtriangleup\end{matrix}$}; \node () at (2*\h,1) {$Y=2$}; \node[rectangle,draw=bonus] (G2) at (2*\h,0){$\begin{matrix}\bigcirc&\bigcirc&\times\\&\bigcirc&\times\end{matrix}$}; \pause \node (L0) at (0,-2) {$ \begin{matrix} P(S=\bigcirc|Y=\emph{0}) = 1\\[6pt] P(S=\bigtriangleup|Y=\emph{0}) = 0\\[6pt] P(S=\times|Y=\emph{0}) = 0 \end{matrix} $}; \node (L1) at (\h,-2) {$ \begin{matrix} P(S=\bigcirc|Y=\emph{1}) = \frac{3}{5}\\[6pt] P(S=\bigtriangleup|Y=\emph{1}) = \frac{2}{5}\\[6pt] P(S=\times|Y=\emph{1}) = 0 \end{matrix} $}; \node (L2) at (2*\h,-2) {$ \begin{matrix} P(S=\bigcirc|Y=\emph{2}) = \frac{3}{5}\\[6pt] P(S=\bigtriangleup|Y=\emph{2}) =0 \\[6pt] P(S=\times|Y=\emph{2}) = \frac{2}{5} \end{matrix} $}; \draw[->] (G0) to (L0); \draw[->] (G1) to (L1); \draw[->] (G2) to (L2); \draw (-2,-1) rectangle (1.9,-3); \node (x0) at (0,-3) {}; \draw (-2+\h,-1) rectangle (1.9+\h,-3); \node (x1) at (\h,-3) {}; \draw (-2+2*\h,-1) rectangle (1.9+2*\h,-3); \pause \draw[blue] (-2,-1) rectangle (1.9,-1.6); \draw[blue] (-2+\h,-1) rectangle (1.9+\h,-1.6); \draw[blue] (-2+2*\h,-1) rectangle (1.9+2*\h,-1.6); \pause \node (x2) at (2*\h,-3) {}; \node (f0) at (0,-4) {$a(\emph{0}) = \bigcirc$}; \node (f1) at (\h,-4) {$a(\emph{1}) = \bigcirc$}; \node (f2) at (2*\h,-4) {$a(\emph{2}) = \bigcirc$}; \draw[->] (x0) to (f0); \draw[->] (x1) to (f1); \draw[->] (x2) to (f2); \pause \node[anchor=west] () at (-2,-4.5) {Exactitude $=\frac{10}{14}(\approx 0.7)$}; \node[anchor=west] () at (-2,-5) {$A(\bigcirc)=1$~$A(\bigtriangleup)=0$~$A(\times)=0$ Exactitude équilibrée $=\frac{1}{3}$}; \end{tikzpicture}