summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJan Aalmoes <jan.aalmoes@inria.fr>2024-01-07 18:42:27 +0100
committerJan Aalmoes <jan.aalmoes@inria.fr>2024-01-07 18:42:27 +0100
commit103677f1a14fe1aec281a69e5d68bbc72335dd9e (patch)
tree91fed7e0b2549410163ff8106b410ee9b3a4a596
parent3ce895b1697e22fa325f962d3bcae0b78eca321a (diff)
classification finie en anglais
-rw-r--r--classification_finie/finit_classif.tex458
-rw-r--r--classification_finie/introduction.tex1
-rw-r--r--classification_finie/main.tex67
-rw-r--r--classification_finie/tabular.tex34
-rw-r--r--classification_finie/utility.tex4
-rw-r--r--main.pdfbin153528 -> 281248 bytes
-rw-r--r--main.tex13
-rw-r--r--theorem.tex5
8 files changed, 580 insertions, 2 deletions
diff --git a/classification_finie/finit_classif.tex b/classification_finie/finit_classif.tex
new file mode 100644
index 0000000..44aa173
--- /dev/null
+++ b/classification_finie/finit_classif.tex
@@ -0,0 +1,458 @@
+
+\subsection{Notations}
+\begin{itemize}
+ \item $(x_0,x_1,\cdots,x_n)\in X_0\times X_1 \times\cdots\times X_n$
+ \item If $A$ is a finite set, then $\# A$ denotes the cardinal number of $A$
+ \item $f:\left\{\begin{matrix}A&\rightarrow &B\\ a&\mapsto & f(b)\end{matrix}\right.$
+ Denotes a function from $A$ to $B$ mapping each element $a$ in $A$ to $f(a)$ in $B$.
+ \item $f\circ g$ is the composition of $f$ and $g$.
+ \item $f^{-1}$ can be either the inverse function of $f$ if $f$ is a bijection or its inverse image otherwise.
+\end{itemize}
+
+\subsection{Problem setup}
+We dispose of two finite sets, a feature space $E$ and a classification space $F$.
+The cardinal numbers of $E$ and $F$ are respectively $m\in\mathbb{N}^*$ and $n\in\mathbb{N}^*$.
+Let $\varphi$ be a bijection from $E$ to $[|0,m-1|]$ and $\psi$ be a bijection from $F$ to $[|0,n-1|]$.
+We also dispose of a $o$-tuple $d: [|0,o-1] \rightarrow E\times F$.
+In machine learning we would say that $d$ models a dataset.
+We build the "dataset of indices" as such :
+\begin{equation*}
+ d' : \left\{
+ \begin{matrix}
+ [|0,o-1|]&\longrightarrow&[|0,m-1|]\times[|0,n-1|]\\
+ i&\mapsto&\left(\varphi(d_0(i)),\psi(d_1(i))\right)
+ \end{matrix}
+ \right.
+\end{equation*}
+
+\begin{definition}
+ \label{def:BA}
+ The balanced accuracy of $f$ on the $o$-tuple $d$ relatively to the set $F$, $BA_F^d(f)$, is a number in $[0,1]$ such that
+ \begin{equation*}
+ BA_F^d(f) = \frac{1}{n}
+ \sum_{y\in F}
+ \frac{
+ \#\left\{j\in [|0,o-1|]\quad| f(d_0(j))=d_1(j)\text{ and }d_1(j) = y\right\}
+ }
+ {\#\{j\in [|0,o-1|]\quad| d_1(j)=y\}}
+ \end{equation*}
+
+\end{definition}
+\textbf{The problem consists in finding an application $f:E\rightarrow F$ such that the balanced accuracy of $f$ on $d$ is maximal.}
+
+\subsection{From a problem on elements to a problem on indices}
+We call the set of functions from $E$ to $F$, $B_{E\rightarrow F}$.
+To simplify notation, the set of function from $[|0,m-1|]$ to $[|0,n-1|]$ we call it $B_{m\rightarrow n}$.
+
+\begin{theorem}
+ \label{th:bij}
+ Let $E$ and $F$ be two finite sets of cardinal numbers $m$ and $n$. There exists a bijection from $B_{E\rightarrow F}$ to $B_{m\rightarrow n}$.
+\end{theorem}
+
+\begin{proof}
+ We proceed by expliciting such a bijection.
+ Let
+ \begin{equation}
+ \Phi :\left\{
+ \begin{matrix}
+ B_{E\rightarrow F} &\longrightarrow& B_{m\rightarrow n}&\\
+ f&\mapsto &\psi\circ f\circ\varphi^{-1}
+ \end{matrix}
+ \right.
+ \end{equation}
+
+ Let's show that $\Phi$ is an injection.
+ Let $(u,v)\in \left(B_{E\rightarrow F}\right)^2$ such that
+ $\Phi(u) = \Phi(v)$.
+ Then
+ \begin{align*}
+ & \psi\circ u\circ\varphi^{-1} = \psi\circ v\circ\varphi^{-1}\\
+ \Leftrightarrow& \psi^{-1}\circ\psi\circ u\circ\varphi^{-1} = \psi^{-1}\circ\psi\circ v\circ\varphi^{-1}\\
+ \Leftrightarrow&u\circ\varphi^{-1} = v\circ\varphi^{-1}\\
+ \Leftrightarrow&u\circ\varphi^{-1}\circ\varphi = v\circ\varphi^{-1}\circ\varphi\\
+ \Leftrightarrow&u = v\\
+ \end{align*}
+ Hence $\Phi$ is injective. Let's show that $\Phi$ is surjective.
+ Let $g\in B_{m\rightarrow n}$.
+ Then
+ $\Phi(\psi^{-1}\circ g\circ\varphi) =
+ \psi\circ\psi^{-1}\circ g\circ\varphi\circ\varphi^{-1} = g$
+ Hence $\Phi$ is surjective.
+ In conclusion $\Phi$ is both injective and surjective: it is a bijection.
+\end{proof}
+
+$\varphi$ and $\psi$ can be seen as indices on $E$ and $F$.
+For instance, each element $e$ in $E$ has a unique index $\varphi(e)$.
+This abstraction step allows us to build explicit functions from $E$ to $F$ without taking into consideration the type of mathematical object that contains those sets.
+ Indeed, theorem \ref{th:bij} gives us that for each function mapping indices of $E$ to indices on $F$ we can find a unique function from $E$ to $F$.
+ And the proof even gives us how to find it: by using $\Phi^{-1}$.
+
+ Let's now explore how the balanced accuracy behaves when composing with $\Phi$.
+\begin{theorem}
+ \label{th:BAphi=BA}
+ Let $E$ and $F$ two finite sets.
+ Let $d$ a tuple of $E\times F$.
+ We have the following equality
+ \begin{equation*}
+ BA^{d'}_{[|0,\#F-1|]}\circ\Phi = BA^d_F
+ \end{equation*}
+\end{theorem}
+
+\begin{proof}
+ Let $E$ and $F$ two finite sets.
+ We have two bijections :
+ $\varphi$ from E to $[|0,\#E-1|]$ and
+ $\psi$ from F to $[|0,\#F-1|]$.
+ With those two functions we build a third bijection
+ $\Phi$ from $B_{E\rightarrow F}$ to $B_{\#E\rightarrow \#F }$ similarly as in the proof of theorem \ref{th:bij}.
+ Let $o\in\mathbb{N}^*$ and $d$ a $o$-tuple of $E\times F$.
+
+ Let $f\in B_{E\rightarrow F}$
+ then
+ \begin{equation}
+ \label{eq:BAdp}
+ \left(BA^{d'}_{[|0,\#F-1|]}\circ\Phi\right)(f) =
+ \frac{1}{\#F}
+ \sum_{i=0}^{\#F-1}\frac{
+ \#\left\{j\in[|0,o-1|]\quad | \Phi(f)(d'_0(j))=d'_1(j)\text{ and }d'_1(j)=i\right\}}
+ {\#\left\{j\in[|0,o-1|]\quad | d'_1(j)=i\right\}}\\
+ \end{equation}
+
+ We also remark that
+ \begin{equation*}
+ \Phi(f)\circ d'_0= 
+ \psi\circ f\circ\varphi^{-1}\circ d'_0 =
+ \psi\circ f\circ\varphi^{-1}\circ \varphi\circ d_0=
+ \psi\circ f\circ d_0
+ \end{equation*}
+
+ Hence, let $j\in[|0,o-1|]$
+ \begin{align*}
+ &\left(\Phi(f)\circ d'_0\right)(j) = d'_1(j)\\
+ \Leftrightarrow &\left(\psi\circ f\circ d_0\right)(j)= d'_1(j)\\
+ \Leftrightarrow &\left(\psi\circ f\circ d_0\right)(j) = \psi\circ d_1(j)\\
+ \Leftrightarrow &\left(f\circ d_0\right)(j) = d_1(j)\\
+ \end{align*}
+
+ Which gives us the following assertion:
+ \begin{equation}
+ \label{eq:d1j}
+ \forall j\in[|0,o-1|]\quad
+ \left[
+ (\Phi(f)\circ d'_0)(j) = d'_1(j)
+ \Leftrightarrow
+ (f\circ d_0)(j) = d_1(j)\\
+ \right]
+ \end{equation}
+
+ Let's now do the same work of switching from indices to elements on "$d'_1(j) = i$".
+ Let $i\in[|0,\#F-1|]$ and $j\in[|0,o-1|]$.
+ \begin{align*}
+ &d'_1(j) = i\\
+ \Leftrightarrow & (\psi\circ d_1)(j) = i\\
+ \Leftrightarrow & d_1(j) = \psi^{-1}(i)
+ \end{align*}
+
+ Hence from equations \ref{eq:BAdp} and \ref{eq:d1j} we obtain
+
+ \begin{align*}
+ &\left(BA^{d'}_{[|0,\#F-1|]}\circ\Phi\right)(f) =
+ \frac{1}{\#F}
+ \sum_{y=0}^{\#F-1}\frac{
+ \#\left\{j\in[|0,o-1|]\quad | f(d_0(j))=d_1(j)\text{ and }d_1(j)=\psi^{-1}(i)\right\}}
+ {\#\left\{j\in[|0,o-1|]\quad | d_1(j)=\psi^{-1}(i)\right\}}\\
+ &=
+ \frac{1}{\#F}
+ \sum_{y=\psi^{-1}(0),\cdots,\psi^{-1}(\#F-1)}\frac{
+ \#\left\{j\in[|0,o-1|]\quad | f(d_0(j))=d_1(j)\text{ and }d_1(j)=y\right\}}
+ {\#\left\{j\in[|0,o-1|]\quad | d_1(j)=y\right\}}\\
+ &=
+ \frac{1}{\#F}
+ \sum_{y\in F}\frac{
+ \#\left\{j\in[|0,o-1|]\quad | f(d_0(j))=d_1(j)\text{ and }d_1(j)=y\right\}}
+ {\#\left\{j\in[|0,o-1|]\quad | d_1(j)=y\right\}}\\
+ \end{align*}
+
+ The final quantity in this sequence of equalities is equal to $BA_F^d(f)$ according to definition \ref{def:BA}.
+\end{proof}
+
+Using theorem \ref{th:BAphi=BA} we can deduce the following result which will be key to finding $\text{argmax}\left(BA_F^d\right)$.
+
+\begin{corollary}
+ \label{co:argmax}
+ \begin{equation*}
+ \text{argmax}\left(BA_F^d\right)
+ = \Phi^{-1}\left(\text{argmax}\left(BA_{[|0,\#F-1|]}^{d'}\right)\right)
+ \end{equation*}
+\end{corollary}
+
+\begin{proof}
+ Let $f' = \text{argmax}\left(BA_{[|0,\#F-1|]}^{d'}\right)$.
+ Then for all $g$ in $B_{E\rightarrow F}$,
+ $BA_F^d(g) = BA_{[|0,\#F-1|]}^{d'}(\Phi(g)) \leq
+ BA_{[|0,\#F-1|]}^{d'}(f') = BA_F^d(\Phi^{-1}(f'))$
+\end{proof}
+
+With corollary \ref{co:argmax} we have that, to solve the classification problem on any dataset, it is sufficient to solve on one of the corresponding indices dataset.
+The focus of the next section is on finding an algorithm to solve such a problem.
+
+\subsection{Building a classification algorithm on $B_{m\rightarrow n}$}
+Let $m$, $n$ and $o$ be natural numbers greater than zero.
+We take $d$, a $o$-tuple of $[|0,m-1|]\times[|0,n-1|]$.
+Since we already know that we are going to work on indices, we don't bother with the general sets $E$ and $F$ from the previous section.
+Instead we use $E=\{0,1,\cdots,m-1\}$ and $F=\{0,1,\cdots,n-1\}$.
+
+The direct approach to find an algorithm that maximizes $BA_{[|0,n-1|]}^d$ would be to compute the balanced accuracy for every function of $B_{m\rightarrow n}$.
+This method works fine for small values of $m$ and $n$ but becomes quickly impossible to compute as those values increase.
+Indeed, we know from combinatorics that $B_{m\rightarrow n}$ contains $n^m$ elements.
+It results in an algorithm with a number of $\mathcal{O}(on^m)$ operations.
+Instead, we propose an algorithm in $\mathcal{O}(onm)$ operations.
+
+To build it we are going to "distribute" the argmax operator, simplifying the expression of the optimal balanced accuracy.
+This distribution requires to find an expression of the balanced accuracy that is context-wise more appropriate.
+We express this alternative form of the balanced accuracy in the following lemma.
+
+\begin{lemma}
+ \label{lem:sumei}
+ For every $i$ in $[|0,m-1|]$, we introduction the following $n$-tuple:
+ \begin{equation*}
+ e_i:\left\{
+ \begin{matrix}
+ [|0,n-1|]&\longrightarrow&\mathbb{N}\\
+ l&\mapsto&
+ \frac{
+ \#\{j\in[|0,o-1|]\quad| d_0(j)=i\text{ and }d_1(j)=l\}
+ }{
+ \#\{j\in[|0,o-1|]\quad| d_1(j)=l\}
+ }\\
+ \end{matrix}
+ \right.
+ \end{equation*}
+
+ Then we can write the balanced accuracy as:
+ \begin{equation*}
+ BA_{[|0,n-1|]}^d(h) = \frac{1}{n}
+ \sum_{i=0}^{m-1} e_i(h(i))
+ \end{equation*}
+ Where $h\in B_{m\rightarrow n}$.
+\end{lemma}
+\begin{proof}
+ Let $l\in[|0,n-1|]$ and $h$, a function in $B_{m\rightarrow n}$.
+ \begin{align*}
+ &
+ \frac{
+ \#\{j\in[|0,o-1|]\quad| h(d_0(j))=d_1(j)\text{ and }d_1(j)=l\}
+ }{
+ \#\{j\in[|0,o-1|]\quad| d_1(j)=l\}
+ }\\
+ =&
+ \frac{
+ \#\{j\in[|0,o-1|]\quad| h(d_0(j))=l\text{ and }d_1(j)=l\}
+ }{
+ \#\{j\in[|0,o-1|]\quad| d_1(j)=l\}
+ }
+ \end{align*}
+ \begin{align*}
+ =&
+ \frac{
+ \#\{j\in[|0,o-1|]\quad| h(d_0(j))=l\text{ and }d_1(j)=h(d_0(j))\}
+ }{
+ \#\{j\in[|0,o-1|]\quad| d_1(j)=l\}
+ }
+ \end{align*}
+ \begin{align}
+ \label{eq:sansi}
+ =&
+ \frac{
+ \#\left(\{j\in[|0,o-1|]\quad| h(d_0(j))=l\}\cap\{j\in[|0,o-1|]\quad| d_1(j)=h(d_0(j))\}\right)
+ }{
+ \#\{j\in[|0,o-1|]\quad| d_1(j)=l\}
+ }
+ \end{align}
+
+ In the previous expression, $l$ refers to an element of the label set $F$.
+ To prove the result we substitute in equation \ref{eq:sansi} $h(d_0(j))$ by an expression containing $i$: an element of $E$.
+ The end goal is to exhibit the quantity of interest $e_{i,j}$.
+ We first remark that for all $j$ in $[|0,o-1|]$
+ \begin{equation*}
+ h(d_0(j))=l
+ \Leftrightarrow d_0(j)\in h^{-1}(\{l\})
+ \Leftrightarrow \exists i\in h^{-1}(\{l\}), d_0(j)=i
+ \end{equation*}
+
+ Which means that
+ \begin{align*}
+ &\left\{
+ j\in[|0,o-1|]\quad| h(d_0(j)) = l
+ \right\}\\
+ =&\left\{
+ j\in[|0,o-1|]\quad| \exists i\in h^{-1}(\{l\}), d_0(j)=i
+ \right\}\\
+ =&\bigcup_{i\in h^{-1}(\{l\})}
+ \left\{
+ j\in[|0,o-1|]\quad| d_0(j)=i
+ \right\}
+ \end{align*}
+
+ Hence, by substitution of $\{j\in[|0,o-1|]\quad| h(d_0(j)) = l\}$ en equation \ref{eq:sansi}, we obtain
+ \begin{align*}
+ &\frac{
+ \#\left(
+ \left(
+ \bigcup_{i\in h^{-1}(\{l\})}
+ \left\{
+ j\in[|0,o-1|]\quad| d_0(j)=i
+ \right\}
+ \right)
+ \cap\{j\in[|0,o-1|]\quad| d_1(j)=h(d_0(j))\}
+ \right)
+ }{
+ \#\{j\in[|0,o-1|]\quad| d_1(j)=l\}
+ }\\
+ =&\frac{
+ \#\left(
+ \bigcup_{i\in h^{-1}(\{l\})}
+ \left\{
+ j\in[|0,o-1|]\quad| d_0(j)=i
+ \text{ and }
+ d_1(j)=h(d_0(j))
+ \right\}
+ \right)
+ }{
+ \#\{j\in[|0,o-1|]\quad| d_1(j)=l\}
+ }\\
+ =&\sum_{i\in h^{-1}(\{l\})}
+ \frac{
+ \#\left\{
+ j\in[|0,o-1|]\quad| d_0(j)=i
+ \text{ and }
+ d_1(j)=h(i)
+ \right\}
+ }{
+ \#\{j\in[|0,o-1|]\quad| d_1(j)=h(i)\}
+ }
+ \end{align*}
+ \begin{align}
+ \label{eq:sumei}
+ =&\sum_{i\in h^{-1}(\{l\})}
+ e_i(h(i))
+ \end{align}
+
+ Then, according to definition \ref{def:BA}
+ \begin{equation*}
+ BA_{[|0,n-1|]}^d(h) = \frac{1}{n}
+ \sum_{l=0}^{n-1}
+ \frac{
+ \#\left\{j\in [|0,o-1|]\quad| h(d_0(j))=d_1(j)\text{ and }d_1(j) = l\right\}
+ }
+ {\#\{j\in [|0,o-1|]\quad| d_1(j)=l\}}
+ \end{equation*}
+ We substitute the general term of this sum by the result obtained in equation \ref{eq:sumei}:
+
+ \begin{align*}
+ &BA_{[|0,n-1|]}^d(h)\\
+ =&\frac{1}{n}
+ \sum_{l=0}^{n-1}\sum_{i\in h^{-1}(\{l\})} e_i(h(i))\\
+ =&\frac{1}{n}
+ \sum_{l=0}^{n-1}\sum_{i=0}^{m-1}1_{h^{-1}(\{l\})}(i) e_i(h(i))\\
+ =&\frac{1}{n}
+ \sum_{i=0}^{m-1} e_i(h(i))\sum_{l=0}^{n-1}1_{h^{-1}(\{l\})}(i)\\
+ \end{align*}
+
+ Since $1_{h^{-1}(\{l\})}(i) = 1$ if and only if $l=h(i)$,
+ $\sum_{l=0}^{n-1}1_{h^{-1}(\{l\})}(i) = 1$.
+
+ Hence we have the expected result.
+\end{proof}
+
+This lemma allows us to shift the computing of the argmax from all possible functions of $B_{m\rightarrow n}$ to the entries of the matrix $M = \left(e_i(l)\right)_{i\in[|0,m-1|],l\in[|0,m-1|]}$.
+More precisely, we find the maximum of each row of $M$ resulting in parcouring once every element of $M$.
+We formalise this idea in the following theorem.
+
+\begin{theorem}
+ Let $e_i$ be the following $n$-tuples of $\mathbb{N}$:
+ \begin{equation*}
+ e_i:\left\{
+ \begin{matrix}
+ [|0,n-1|]&\longrightarrow&\mathbb{N}\\
+ l&\mapsto&
+ \frac{
+ \#\{j\in[|0,o-1|]\quad| d_0(j)=i\text{ and }d_1(j)=l\}
+ }{
+ \#\{j\in[|0,o-1|]\quad| d_1(j)=l\}
+ }\\
+ \end{matrix}
+ \right.
+ \end{equation*}
+ Let $f\in B_{m\rightarrow n}$ such that for all $i$ in $[|0,m-1|]$
+ \begin{equation*}
+ f(i) = \text{argmax}\left(e_i\right)
+ \end{equation*}
+
+ Then
+ \begin{equation*}
+ f = \text{argmax}\left(BA_{[|0,n-1|]}^d\right)
+ \end{equation*}
+\end{theorem}
+
+\begin{proof}
+ Let $g\in B_{m\rightarrow n}$.
+ We are going to show that $BA_{[|0,n-1|]}^d(g)\leq BA_{[|0,n-1|]}^d(f)$.
+ We start by saying that
+ for all $i\in[|0,n-1|]$, $0\leq e_i(g(i))\leq e_i(f(i))$.
+ Which gives us that
+ \begin{equation*}
+ \sum_{i=0}^{m-1}e_i(g(i)) \leq \sum_{i=0}^{m-1}e_i(f(i))
+ \end{equation*}
+ and hence
+ \begin{equation*}
+ \frac{1}{n}\sum_{i=0}^{m-1}e_i(g(i)) \leq \frac{1}{n}\sum_{i=0}^{m-1}e_i(f(i))
+ \end{equation*}
+
+ And finally, according to lemma \ref{lem:sumei} we have the result.
+\end{proof}
+
+According to this result, we can write the following algorithm in $\mathcal{O}(onm)$ to solve our optimisation problem.
+
+\begin{algorithm}
+ \caption{Optimisation: finding $\text{argmax}\left(BA^d_{[|0,n-1|]}\right)$}
+ \label{algo:argmax}
+ \begin{algorithmic}
+ \For{$i\gets 0,\cdots,m-1$}
+ \For{$l\gets 0,\cdots,n-1$}
+ \State $e_{i,l}\gets
+ \frac{
+ \#\{j\in[|0,o-1|]\quad | d_0(j)=i\text{ and }d_1(j)=l\}
+ }{
+ \#\{j\in[|0,o-1|]\quad | d_1(j)=l\}
+ }$
+ \footnotesize
+ \Comment{Compute $e_i(l)$}
+ \normalsize
+ \EndFor
+ \EndFor
+ \For{$i\gets 0,\cdots,n-1$}
+ \State $f(i)\gets\text{argmax}_l(e_{i,l})$
+ \footnotesize
+ \Comment{Value of $l$ that maximizes $e_{i,l}$}
+ \normalsize
+ \EndFor
+ \State \Return $f$
+ \end{algorithmic}
+\end{algorithm}
+
+\FloatBarrier
+\subsection{Extention to unseen data}
+Alogrithm \ref{algo:argmax} is an efficient algorithm to find a classifier the maximizes balanced accuracy on the set of indices.
+From the result $f$ of this alogrithm we find a classifier that solves the problem of maximizing the balanced accuracy on element by applying the inversse of $\Phi$.
+Hence $\Phi^{-1}(f)$ is solution.
+Computing it requires $\mathcal{O}(on)$ operations resulting in an overall complexity of $\mathcal{O}(onm)$.
+
+This classifier algorithm is limited to finite feature space but there are cases where we can find workaround to still use it.
+For instance, by using clusturing prior to our method we can reduce to a finit feature space.
+Also, if $(E, O)$ is a sub-topology we can match any element of the englobing set to its nearest counterpart in $E$.
+We did that on LAW and COMPAS dataset and compare our approach to a random forest.
+
+
+The main takeaway from figures \ref{fig:ba} and \ref{fig:time} is that our finite classifier alogirthm outperforms state of the art in terms of balanced accuracy and is way faster at achieving this result.
+
diff --git a/classification_finie/introduction.tex b/classification_finie/introduction.tex
new file mode 100644
index 0000000..ab5aaf3
--- /dev/null
+++ b/classification_finie/introduction.tex
@@ -0,0 +1 @@
+intro
diff --git a/classification_finie/main.tex b/classification_finie/main.tex
new file mode 100644
index 0000000..2f40530
--- /dev/null
+++ b/classification_finie/main.tex
@@ -0,0 +1,67 @@
+\documentclass{article}
+
+\usepackage{graphicx}
+\usepackage{amsmath}
+\usepackage{amsthm}
+\usepackage{amsfonts}
+\usepackage{algpseudocode}
+\usepackage{algorithm}
+\usepackage{placeins}
+\usepackage{subcaption}
+\usepackage{graphicx}
+\usepackage{setspace}
+
+\newtheorem{definition}{Definition}
+\newtheorem{theorem}{Theorem}
+\newtheorem{lemma}{Lemma}
+\newtheorem{corollary}{Corollary}[theorem]
+
+\doublespace
+
+\begin{document}
+\begin{abstract}
+ The abstract
+\end{abstract}
+\tableofcontents
+\newpage
+\section{Introduction}
+\input{introduction}
+
+\section{Finit classification}
+\input{finit_classif}
+
+\section{Applications}
+\input{utility}
+ \subsection{Attribute inference attack}
+ \subsection{Painting classification}
+ \subsection{Lora}
+ \subsection{Tabular data}
+ \input{tabular}
+ \subsection{Movie recommender system}
+ \subsection{labeled faces in the wild}
+
+
+\section{Computing cost}
+ \subsection{Cost of training}
+ \subsection{Cost of inference}
+
+\section{Decentralization}
+ \subsection{Sharing indexes}
+ \subsection{Sharing matrix of probability law}
+
+\section{Privacy}
+ \subsection{Private indexing}
+ \subsection{Differential privacy}
+
+\section{Fairness}
+ \subsection{Preprocessing}
+ \subsection{Inprocessing and postprocessing}
+
+\section{Explainability}
+ \subsection{Transparancy}
+ \subsection{Interpretability}
+ \subsection{Explainability}
+
+\section{Conclusion}
+
+\end{document}
diff --git a/classification_finie/tabular.tex b/classification_finie/tabular.tex
new file mode 100644
index 0000000..ca2caaa
--- /dev/null
+++ b/classification_finie/tabular.tex
@@ -0,0 +1,34 @@
+\FloatBarrier
+\begin{figure}
+ \centering
+ \begin{subfigure}{0.44\textwidth}
+ \includegraphics[width=\textwidth]{figure/ba/COMPAS.pdf}
+ \caption{COMPAS}
+ \end{subfigure}
+ \begin{subfigure}{0.44\textwidth}
+ \includegraphics[width=\textwidth]{figure/ba/LAW.pdf}
+ \caption{LAW}
+ \end{subfigure}
+
+ \caption{Comparison of balanced accuracies betwen a random forest and our algorithm.
+ On COMPAS the balanced accuray are similar but on LAW we observe that random forest performs slightly better than random guess when our algorithm manages a 64\% balanced accuracy on average}
+ \label{fig:ba}
+\end{figure}
+
+\begin{figure}
+ \centering
+ \begin{subfigure}{0.44\textwidth}
+ \includegraphics[width=\textwidth]{figure/time/COMPAS.pdf}
+ \caption{COMPAS}
+ \end{subfigure}
+ \begin{subfigure}{0.44\textwidth}
+ \includegraphics[width=\textwidth]{figure/time/LAW.pdf}
+ \caption{LAW}
+ \end{subfigure}
+
+ \caption{Comparison of computing times betwen a random forest and our algorithm.
+ On both dataset, the computing time of our algorithm is multiple factor of magnitude smaller than a random forest.
+ }
+ \label{fig:time}
+\end{figure}
+\FloatBarrier
diff --git a/classification_finie/utility.tex b/classification_finie/utility.tex
new file mode 100644
index 0000000..8fc026c
--- /dev/null
+++ b/classification_finie/utility.tex
@@ -0,0 +1,4 @@
+Let's try out finit classification in various common machine learning application.
+The goal of this section is also to bring up the limitations of finit classification as we go from textbooks applications to scenarios where we have to include more and more workaround.
+We hope that this list of typical examples with results will help readers to decide if finit classification fits their needs or not.
+To accantuate the differences between finit classification and other method, we systematically compare it with the state of the art algorithm of application.
diff --git a/main.pdf b/main.pdf
index 1cb0d13..c1cef3e 100644
--- a/main.pdf
+++ b/main.pdf
Binary files differ
diff --git a/main.tex b/main.tex
index 2b4c42f..1cefcab 100644
--- a/main.tex
+++ b/main.tex
@@ -2,6 +2,16 @@
\usepackage[french]{babel}
\usepackage{placeins}
+\usepackage{graphicx}
+\usepackage{amsmath}
+\usepackage{amsthm}
+\usepackage{amsfonts}
+\usepackage{algpseudocode}
+\usepackage{algorithm}
+\usepackage{subcaption}
+\usepackage{setspace}
+
+\input{theorem}
\begin{document}
\begin{titlepage}
@@ -82,8 +92,7 @@
\subsection{Postprocessing}
\chapter{Classification finie}
- \section{D'un problème sur les éléments vers un problème sur les indices}
- \section{Alogrithme de classification sur $B_{m\rightarrow n}$}
+ \input{classification_finie/finit_classif}
\chapter{Attaque d'inférence d'attribut sensible}
diff --git a/theorem.tex b/theorem.tex
new file mode 100644
index 0000000..22ef268
--- /dev/null
+++ b/theorem.tex
@@ -0,0 +1,5 @@
+
+\newtheorem{definition}{Definition}
+\newtheorem{theorem}{Theorem}
+\newtheorem{lemma}{Lemma}
+\newtheorem{corollary}{Corollary}[theorem]