diff options
author | Jan Aalmoes <jan.aalmoes@inria.fr> | 2024-09-13 00:07:42 +0200 |
---|---|---|
committer | Jan Aalmoes <jan.aalmoes@inria.fr> | 2024-09-13 00:07:42 +0200 |
commit | faa07a8f3337c5d191597ea9b9587cc0969d663c (patch) | |
tree | a46440db847ce447917abecb7971d90db4a1f150 /ACSAC/proofs | |
parent | 7fc151d6a198d13dc9e1374522ec396d72905d3f (diff) |
avnacé aia, remerciement notations, notes
Diffstat (limited to 'ACSAC/proofs')
-rw-r--r-- | ACSAC/proofs/proof_advdebias.tex | 30 | ||||
-rw-r--r-- | ACSAC/proofs/proof_egd_dp.tex | 33 | ||||
-rw-r--r-- | ACSAC/proofs/proof_egd_eo.tex | 35 |
3 files changed, 98 insertions, 0 deletions
diff --git a/ACSAC/proofs/proof_advdebias.tex b/ACSAC/proofs/proof_advdebias.tex new file mode 100644 index 0000000..06212a0 --- /dev/null +++ b/ACSAC/proofs/proof_advdebias.tex @@ -0,0 +1,30 @@ +Definition~\ref{def:dp} of \dempar can be written synthetically as the following property: +$P_{\hat{Y},S}=P_{\hat{Y}}\otimes P_{S}$. +Where $P_{\hat{Y}}\otimes P_{S}$ is the product measure defined as the unique measure on +$\mathcal{P}(\mathcal{Y})\times\mathcal{P}(\mathcal{S})$ such that +$\forall y\in\mathcal{P}(\mathcal{Y})\forall s\in\mathcal{P}(\mathcal{S})\quad P_{\hat{Y}}\otimes P_{S}(y\times s) = P_{\hat{Y}}(y)P_{S}(s)$. +This is equivalent to definition~\ref{def:dp} for binary labels and sensitive attribute but more general because when $\hat{Y}$ is not binary as in soft labels, this new definition is well defined. +% We write formally +\begin{definition} +\label{def:dps} + $\hat{Y}$ satisfies extended \dempar for $S$ if and only if: $P_{\hat{Y},S}=P_{\hat{Y}}\otimes P_{S}$. +\end{definition} +This definition is the same as the statistical parity introduced for fair regression~\cite{fairreg}. +Note that we can not derive a quantity similar to \demparlevel with this definition but this extended \dempar assures indistinguishably of the sensitive attribute when looking at the soft labels. +We have the following theorem: +\begin{theorem}\label{th:advdebias} + The following propositions are equivalent: ``$\hat{Y}_s$ is independent of $S$'' and ``Balanced accuracy of \aia in \ref{tm:soft} is $\frac{1}{2}$'' +\end{theorem} +\begin{proof} +Let's show that it is equivalent to say "all attack models have a balanced accuracy of 0.5" and "the target model satisfies extended demographic parity". +{\footnotesize + \begin{align*} + &\forall a~P(\hat{Y}\in a^{-1}(\{0\})|S=0)+P(\hat{Y}\in a^{-1}(\{1\})|S=1) = 1\\ + \Leftrightarrow&\forall a~P(\hat{Y}\in a^{-1}(\{0\})|S=0)=P(\hat{Y}\in a^{-1}(\{0\})|S=1)\\ + \Leftrightarrow&\forall A~P(\hat{Y}\in A)|S=0)=P(\hat{Y}\in A|S=1) \\ + \Leftrightarrow &P_{\hat{Y},S}=P_{\hat{Y}}\otimes P_{S} + \end{align*} + } +\end{proof} + +%In conclusion, with extended \dempar we can not unconditionally bound the balanced accuracy of the attack without introducing distances in the space of distributions, but it gives us a condition to protect the sensitive attribute in case of an adversary gaining access to soft labels (AS).
\ No newline at end of file diff --git a/ACSAC/proofs/proof_egd_dp.tex b/ACSAC/proofs/proof_egd_dp.tex new file mode 100644 index 0000000..d0f23f6 --- /dev/null +++ b/ACSAC/proofs/proof_egd_dp.tex @@ -0,0 +1,33 @@ +\begin{theorem} +\label{th:dpgood} +Maximum attack accuracy achievable by \aia in \ref{tm:hard} is equal to $\frac{1}{2}(1+\text{\demparlevel of }\targetmodel)$. +\end{theorem} +\begin{proof} +The set $B$ of function from $\{0,1\}$ to $\{0,1\}$ contains four elements: $b_0=0$, $b_1=id$, $b_2=1-id$ and $b,3=1$, where $\forall x, id(x) = x$. +For every $b\in B$ the balanced \aia accuracy is +$BA(b) = \frac{1}{2}(P(b\circ \hat{Y}=0|S=0) + P(b\circ \hat{Y}=1|S=1))$. +We have $BA(b_0) = BA(b_3) = \frac{1}{2}$, hence, we can discard those elements when solving the attack optimisation problem. +This problem writes $\text{max}_{b\in B}B(A(b)) = \text{max}(BA(b_1), BA(b_2))$. +We remark that $b_1\circ \hat{Y}=\hat{Y}$ and $b_2\circ \hat{Y}=1 - \hat{Y}$. +Hence, +{\footnotesize +\begin{align*} + BA(b_1) &= \frac{1}{2}(P(\hat{Y}=0|S=0) + P(\hat{Y}=1|S=1))\\ + &=\frac{1}{2}(1+P(\hat{Y}=1|S=1) - P(\hat{Y}=1|S=0))\\ + BA(b_2)&=\frac{1}{2}(1+P(\hat{Y}=1|S=0) - P(\hat{Y}=1|S=1)) +\end{align*} +} +Thus, +{\footnotesize +\begin{align*} + &\text{max}_{b\in B}BA(b) + = \frac{1}{2}\left(1+\text{max}\left( + \begin{matrix} + P(\hat{Y}=0|S=0) -P(\hat{Y}=1|S=1)\\ + P(\hat{Y}=1|S=0) -P(\hat{Y}=0|S=1) + \end{matrix} + \right)\right)\\ + =&\frac{1}{2}(1+|P(\hat{Y}=1|S=1) - P(\hat{Y}=1|S=0)|) +\end{align*} +} +\end{proof} diff --git a/ACSAC/proofs/proof_egd_eo.tex b/ACSAC/proofs/proof_egd_eo.tex new file mode 100644 index 0000000..435add2 --- /dev/null +++ b/ACSAC/proofs/proof_egd_eo.tex @@ -0,0 +1,35 @@ +\begin{theorem} +\label{th:eoo} +If $\hat{Y}$ satisfies \eo for $Y$ and $S$ then the balanced accuracy of \aia in \ref{tm:hard} is $\frac{1}{2}$ iff $Y$ is independent of $S$ or $\hat{Y}$ is independent of $Y$. +\end{theorem} + +\begin{proof} +Let $\attackmodel$ be the attack model trained for AS: $\hat{S}=a\circ \hat{Y}$. +By the total probability formula +{\footnotesize +\begin{align*} +P(\hat{S}=0|S=0)=&P(\hat{S}=0|S=0Y=0)P(Y=0|S=0)\\ ++&P(\hat{S}=0|S=0Y=1)P(Y=1|S=0) +\end{align*} +} +and as well +{\footnotesize +\begin{align*} +P(\hat{S}=1|S=1)=&P(\hat{S}=1|S=1Y=0)P(Y=0|S=1)\\ + +&P(\hat{S}=1|S=1Y=1)P(Y=1|S=1) +\end{align*} +} +Then we substitute those terms in the definition of the balanced accuracy of $\targetmodel$. +{\footnotesize +\begin{align*} + &\frac{P(\hat{S}=0|S=0)+P(\hat{S}=1|S=1)}{2}\\ + =&\frac{1}{2}+\frac{1}{2}\left(P(Y=0|S=0)-P(Y=0|S=1)\right)\\ + &\left(P(\hat{Y}\in \attackmodel^{-1}(\{1\})|S=1Y=0) - + P(\hat{Y}\in \attackmodel^{-1}(\{1\})|S=1Y=1)\right) +\end{align*} +} +The balanced accuracy is equal to 0.5 if and only if $P(Y=0|S=0)=P(Y=0|S=1)$ +or $\forall \attackmodel~P(\hat{Y}\in \attackmodel^{-1}(\{1\})|S=1Y=0)=P(\hat{Y}\in \attackmodel^{-1}(\{1\})|S=1Y=1)$. +The first term indicates that $Y$ is independent of $S$ and the second term indicates that $S=1$ the $\targetmodel$ random guess utility. +We can do the same computing for $S=0$ and obtain a similar conclusion. +\end{proof}
\ No newline at end of file |