summaryrefslogtreecommitdiff
path: root/biblio.bib
diff options
context:
space:
mode:
authorJan Aalmoes <jan.aalmoes@inria.fr>2024-09-30 20:03:51 +0200
committerJan Aalmoes <jan.aalmoes@inria.fr>2024-09-30 20:03:51 +0200
commit59ab9bb16768585e2c4bd20c8ae63b12da8dfaad (patch)
tree46101c5cb9badc996f88e3d835d722eacb995b9f /biblio.bib
parent644fa7c290ac801f15180dd8a9c425c3b757adf5 (diff)
synthetid methodo jan
Diffstat (limited to 'biblio.bib')
-rw-r--r--biblio.bib60
1 files changed, 60 insertions, 0 deletions
diff --git a/biblio.bib b/biblio.bib
index 697b330..82b4f5f 100644
--- a/biblio.bib
+++ b/biblio.bib
@@ -1,4 +1,64 @@
######################""
+@inproceedings{abowd2008protective,
+ title={How protective are synthetic data?},
+ author={Abowd, John M and Vilhuber, Lars},
+ booktitle={International Conference on Privacy in Statistical Databases},
+ pages={239--246},
+ year={2008},
+ organization={Springer}
+}
+@inproceedings{jordon2018pate,
+ title={PATE-GAN: Generating synthetic data with differential privacy guarantees},
+ author={Jordon, James and Yoon, Jinsung and Van Der Schaar, Mihaela},
+ booktitle={International conference on learning representations},
+ year={2018}
+}
+@inproceedings{abay2019privacy,
+ title={Privacy preserving synthetic data release using deep learning},
+ author={Abay, Nazmiye Ceren and Zhou, Yan and Kantarcioglu, Murat and Thuraisingham, Bhavani and Sweeney, Latanya},
+ booktitle={Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2018, Dublin, Ireland, September 10--14, 2018, Proceedings, Part I 18},
+ pages={510--526},
+ year={2019},
+ organization={Springer}
+}
+
+@inproceedings{ben2002theoretical,
+ title={A theoretical framework for learning from a pool of disparate data sources},
+ author={Ben-David, Shai and Gehrke, Johannes and Schuller, Reba},
+ booktitle={Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining},
+ pages={443--449},
+ year={2002}
+}
+
+@inproceedings{chen2020differential,
+ title={Differential privacy protection against membership inference attack on machine learning for genomic data},
+ author={Chen, Junjie and Wang, Wendy Hui and Shi, Xinghua},
+ booktitle={BIOCOMPUTING 2021: Proceedings of the Pacific Symposium},
+ pages={26--37},
+ year={2020},
+ organization={World Scientific}
+}
+@article{rahman2018membership,
+ title={Membership inference attack against differentially private deep learning model.},
+ author={Rahman, Md Atiqur and Rahman, Tanzila and Lagani{\`e}re, Robert and Mohammed, Noman and Wang, Yang},
+ journal={Trans. Data Priv.},
+ volume={11},
+ number={1},
+ pages={61--79},
+ year={2018}
+}
+
+@article{kivinen1997exponentiated,
+ title={Exponentiated gradient versus gradient descent for linear predictors},
+ author={Kivinen, Jyrki and Warmuth, Manfred K},
+ journal={information and computation},
+ volume={132},
+ number={1},
+ pages={1--63},
+ year={1997},
+ publisher={Elsevier}
+}
+
@article{breiman2001random,
title={Random forests},
author={Breiman, Leo},