summaryrefslogtreecommitdiff
path: root/ACSAC/paper.bib
blob: ec7377ee07644553883e52909ce25f35b71c9ebe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
@misc{carlini2022membership,
      title={Membership Inference Attacks From First Principles}, 
      author={Nicholas Carlini and Steve Chien and Milad Nasr and Shuang Song and Andreas Terzis and Florian Tramer},
      year={2022},
      eprint={2112.03570},
      archivePrefix={arXiv},
      primaryClass={cs.CR}
}

@inproceedings{salem2023sok,
  title={SoK: Let the privacy games begin! A unified treatment of data inference privacy in machine learning},
  author={Salem, Ahmed and Cherubin, Giovanni and Evans, David and K{\"o}pf, Boris and Paverd, Andrew and Suri, Anshuman and Tople, Shruti and Zanella-B{\'e}guelin, Santiago},
  booktitle={2023 IEEE Symposium on Security and Privacy (SP)},
  pages={327--345},
  year={2023},
  organization={IEEE}
}


@inproceedings{ijcai2022p766,
  title     = {Differential Privacy and Fairness in Decisions and Learning Tasks: A Survey},
  author    = {Fioretto, Ferdinando and Tran, Cuong and Van Hentenryck, Pascal and Zhu, Keyu},
  booktitle = {Proceedings of the Thirty-First International Joint Conference on
               Artificial Intelligence, {IJCAI-22}},
  publisher = {International Joint Conferences on Artificial Intelligence Organization},
  editor    = {Lud De Raedt},
  pages     = {5470--5477},
  year      = {2022},
  month     = {7},
  note      = {Survey Track},
  doi       = {10.24963/ijcai.2022/766},
  url       = {https://doi.org/10.24963/ijcai.2022/766},
}

@article{accfairtradeoff,
author = {Pinzon, Carlos and Palamidessi, Catuscia and Piantanida, Pablo and Valencia, Frank},
year = {2023},
month = {05},
pages = {1-30},
title = {On the incompatibility of accuracy and equal opportunity},
journal = {Machine Learning},
doi = {10.1007/s10994-023-06331-y}
}

@article{rodolfa2021empirical,
  title={Empirical observation of negligible fairness--accuracy trade-offs in machine learning for public policy},
  author={Rodolfa, Kit T and Lamba, Hemank and Ghani, Rayid},
  journal={Nature Machine Intelligence},
  volume={3},
  number={10},
  pages={896--904},
  year={2021},
  publisher={Nature Publishing Group UK London}
}

@article{zhai2022understanding,
  title={Understanding why generalized reweighting does not improve over ERM},
  author={Zhai, Runtian and Dan, Chen and Kolter, Zico and Ravikumar, Pradeep},
  booktitle={International Conference on Learning Representation},
  year={2023}
}

@article{
veldanda2022fairness,
title={Fairness via In-Processing in the Over-parameterized Regime: A Cautionary Tale with MinDiff Loss},
author={Akshaj Kumar Veldanda and Ivan Brugere and Jiahao Chen and Sanghamitra Dutta and Alan Mishler and Siddharth Garg},
journal={Transactions on Machine Learning Research},
issn={2835-8856},
year={2023},
url={https://openreview.net/forum?id=f4VyYhkRvi},
note={}
}

%  general
% url = {https://arxiv.org/abs/2206.10923},
@misc{arxivmichael,
  doi = {10.48550/ARXIV.2206.10923},
  author = {Maheshwari, Gaurav and Perrot, Michaël},
  title = {FairGrad: Fairness Aware Gradient Descent},
  publisher = {arXiv},
  year = {2022},
}


@InProceedings{classIMb1,
  title = 	 {Class-Imbalanced Semi-Supervised Learning with Adaptive Thresholding},
  author =       {Guo, Lan-Zhe and Li, Yu-Feng},
  booktitle = 	 {Proceedings of the 39th International Conference on Machine Learning},
  pages = 	 {8082--8094},
  year = 	 {2022},
  editor = 	 {Chaudhuri, Kamalika and Jegelka, Stefanie and Song, Le and Szepesvari, Csaba and Niu, Gang and Sabato, Sivan},
  volume = 	 {162},
  series = 	 {Proceedings of Machine Learning Research},
  month = 	 {17--23 Jul},
  publisher =    {PMLR},
  pdf = 	 {https://proceedings.mlr.press/v162/guo22e/guo22e.pdf},
  url = 	 {https://proceedings.mlr.press/v162/guo22e.html}
}

@article{classIMb2,
  title={Deep learning model calibration for improving performance in class-imbalanced medical image classification tasks},
  author={Sivaramakrishnan Rajaraman and Prasanth Ganesan and Sameer K. Antani},
  journal={PLoS ONE},
  year={2021},
  volume={17},
  url={https://api.semanticscholar.org/CorpusID:238259577}
}

@misc{classIMb3,
	author = {Jason Brownlee},
	title = {{A} {G}entle {I}ntroduction to {T}hreshold-{M}oving for {I}mbalanced {C}lassification - {M}achine{L}earning{M}astery.com --- machinelearningmastery.com},
	year = {},
	note = {[Accessed 31-08-2023]},
} 
%issn = {0022-0000},
%url = {https://www.sciencedirect.com/science/article/pii/S002200009791504X},
@article{saddlepointsolve,
title = {A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting},
journal = {Journal of Computer and System Sciences},
volume = {55},
number = {1},
pages = {119-139},
year = {1997},
doi = {10.1006/jcss.1997.1504},
author = {Yoav Freund and Robert E Schapire}
}



%isbn = {1595933832},
%address = {New York, NY, USA},
@inproceedings{curves,
author = {Davis, Jesse and Goadrich, Mark},
title = {The Relationship between Precision-Recall and ROC Curves},
year = {2006},
publisher = {Association for Computing Machinery},
doi = {10.1145/1143844.1143874},
booktitle = {International Conference on Machine Learning},
pages = {233–240},
location = {Pittsburgh, Pennsylvania, USA},
series = {ICML '06}
}


@inproceedings{cormode,
author = {Cormode, Graham},
title = {Personal Privacy vs Population Privacy: Learning to Attack Anonymization},
year = {2011},
publisher = {Association for Computing Machinery},
doi = {10.1145/2020408.2020598},
booktitle = {ACM SIGKDD International Conference on Knowledge Discovery and Data Mining},
pages = {1253–1261},
location = {San Diego, California, USA},
series = {KDD '11}
}

%publisher = {Association for Computing Machinery},
%address = {New York, NY, USA},
%issn = {0360-0300},
%url = {https://doi.org/10.1145/3457607},
@article{surveyfair,
author = {Mehrabi, Ninareh and Morstatter, Fred and Saxena, Nripsuta and Lerman, Kristina and Galstyan, Aram},
title = {A Survey on Bias and Fairness in Machine Learning},
year = {2021},
volume = {54},
number = {6},
doi = {10.1145/3457607},
journal = {ACM Comput. Surv.},
month = {jul},
articleno = {115},
numpages = {35},
}


@article{attinfSocial1,
author = {Gong, Neil Zhenqiang and Talwalkar, Ameet and Mackey, Lester and Huang, Ling and Shin, Eui Chul Richard and Stefanov, Emil and Shi, Elaine (Runting) and Song, Dawn},
title = {Joint Link Prediction and Attribute Inference Using a Social-Attribute Network},
year = {2014},
publisher = {Association for Computing Machinery},
volume = {5},
number = {2},
doi = {10.1145/2594455},
journal = {ACM Trans. Intell. Syst. Technol.},
}

  
%address = {New York, NY, USA},

%issn = {2471-2566},
%url = {https://doi.org/10.1145/3154793},
%numpages = {30},
%%month = {jan},
@article{attinfSocial2,
author = {Gong, Neil Zhenqiang and Liu, Bin},
title = {Attribute Inference Attacks in Online Social Networks},
year = {2018},
publisher = {Association for Computing Machinery},
volume = {21},
number = {1},
doi = {10.1145/3154793},
journal = {ACM Trans. Priv. Secur.},
articleno = {3},
}

%isbn = {978-1-931971-32-4},
%address = {Austin, TX},
%url = {https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/gong},
%publisher = {USENIX Association},
%month = aug,
@inproceedings {attinfSocial3,
author = {Neil Zhenqiang Gong and Bin Liu},
title = {You Are Who You Know and How You Behave: Attribute Inference Attacks via Users{\textquoteright} Social Friends and Behaviors},
booktitle = {USENIX Security Symposium },
year = {2016},
pages = {979--995},
}


  %URL = {https://hal.inria.fr/hal-00748162},
  %ADDRESS = {San Diego, United States},
  %MONTH = Feb,
@inproceedings{attinfSocial4,
  TITLE = {{You Are What You Like! Information Leakage Through Users' Interests}},
  YEAR = {2012},
  AUTHOR = {Chaabane, Abdelberi and Acs, Gergely and Kaafar, Mohamed Ali},
  BOOKTITLE = {Network and Distributed System Security Symposium},
  PAGES = {1-14},
}




@inproceedings{attinfSocial5,
  author={Elena Zheleva and Lise Getoor},
  title={To join or not to join: the illusion of privacy in social networks with mixed public and private user profiles},
  year={2009},
  BOOKTITLE = {International Conference on World Wide Web},
  pages={531-540},
  doi={10.1145/1526709.1526781},
}



%isbn = {9781450349130},
%publisher = {International World Wide Web Conferences Steering Committee},
%address = {Republic and Canton of Geneva, CHE},
%url = {https://doi.org/10.1145/3038912.3052695},
@inproceedings{attinfSocial6,
author = {Jia, Jinyuan and Wang, Binghui and Zhang, Le and Gong, Neil Zhenqiang},
title = {AttriInfer: Inferring User Attributes in Online Social Networks Using Markov Random Fields},
year = {2017},
doi = {10.1145/3038912.3052695},
booktitle = {nternational Conference on World Wide Web},
pages = {1561–1569},
location = {Perth, Australia},
series = {WWW '17}
}

  

%isbn = {9781450382878},
%publisher = {Association for Computing Machinery},
%address = {New York, NY, USA},
@inbook{dysan,
author = {Boutet, Antoine and Frindel, Carole and Gambs, S\'{e}bastien and Jourdan, Th\'{e}o and Ngueveu, Rosin Claude},
title = {DySan: Dynamically Sanitizing Motion Sensor Data Against Sensitive Inferences through Adversarial Networks},
year = {2021},
doi = {10.1145/3433210.3453095},
booktitle = {ACM Asia Conference on Computer and Communications Security},
pages = {672–686},
serie = {ASIA CCS '21}
}

@inproceedings{attprivacy,
author = {Zhang, Wanrong and Ohrimenko, Olga and Cummings, Rachel},
title = {Attribute Privacy: Framework and Mechanisms},
year = {2022},
isbn = {9781450393522},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3531146.3533139},
doi = {10.1145/3531146.3533139},
booktitle = {Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency},
pages = {757–766},
numpages = {10},
keywords = {Pufferfish privacy, attribute privacy, formal privacy frameworks, privacy-preserving mechanisms},
series = {FAccT '22}
}

%differential privacy and fairness
@inproceedings{dispvuln,
author    = {Mohammad Yaghini and  Bogdan Kulynych and Carmela Troncoso},
title     = {Disparate Vulnerability: on the Unfairness of Privacy Attacks Against Machine Learning},
year      = {2022},
booktitle = {Privacy Enhancing Technologies Symposium}
}


%isbn = {9781450391405},
%publisher = {Association for Computing Machinery},
%address = {New York, NY, USA},
@inproceedings{GongMIAUnfair,
author = {Zhong, Da and Sun, Haipei and Xu, Jun and Gong, Neil and Wang, Wendy Hui},
title = {Understanding Disparate Effects of Membership Inference Attacks and Their Countermeasures},
year = {2022},
doi = {10.1145/3488932.3501279},
booktitle = {ACM on Asia Conference on Computer and Communications Security},
pages = {959–974},
location = {Nagasaki, Japan},
series = {ASIA CCS '22}
}


%sbn = {9781450311151},
%publisher = {Association for Computing Machinery},
%address = {New York, NY, USA},
%url = {https://doi.org/10.1145/2090236.2090255},
@inproceedings{indivfairness,
author = {Dwork, Cynthia and Hardt, Moritz and Pitassi, Toniann and Reingold, Omer and Zemel, Richard},
title = {Fairness through Awareness},
year = {2012},
doi = {10.1145/2090236.2090255},
booktitle = {Innovations in Theoretical Computer Science Conference},
pages = {214–226},
location = {Cambridge, Massachusetts},
series = {ITCS '12}
}

@inproceedings{outIndist,
author = {Dwork, Cynthia and Kim, Michael P. and Reingold, Omer and Rothblum, Guy N. and Yona, Gal},
title = {Outcome indistinguishability},
year = {2021},
isbn = {9781450380539},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3406325.3451064},
doi = {10.1145/3406325.3451064},
booktitle = {Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing},
pages = {1095–1108},
numpages = {14},
keywords = {Prediction, Fairness, Computational Indistinguishability},
location = {Virtual, Italy},
series = {STOC 2021}
}

  



%isbn = {9781450369367},
%publisher = {Association for Computing Machinery},
%address = {New York, NY, USA},
%url = {https://doi.org/10.1145/3351095.3372872},
@inproceedings{dpfair,
author = {Pujol, David and McKenna, Ryan and Kuppam, Satya and Hay, Michael and Machanavajjhala, Ashwin and Miklau, Gerome},
title = {Fair Decision Making Using Privacy-Protected Data},
year = {2020},
doi = {10.1145/3351095.3372872},
booktitle = {Conference on Fairness, Accountability, and Transparency},
pages = {189–199},
location = {Barcelona, Spain},
series = {FAT* '20}
}

%url={https://ojs.aaai.org/index.php/AAAI/article/view/17193}, 
%month={May}, 
@article{fairprivatelagrangian, 
title={Differentially Private and Fair Deep Learning: A Lagrangian Dual Approach}, 
volume={35}, 
number={11}, 
journal={AAAI Conference on Artificial Intelligence}, 
author={Tran, Cuong and Fioretto, Ferdinando and Van Hentenryck, Pascal}, 
year={2021}, 
pages={9932-9939} 
}

%editor = 	 {Chaudhuri, Kamalika and Salakhutdinov, Ruslan},
  %series = 	 {Proceedings of Machine Learning Research},
  %month = 	 {09--15 Jun},
  %publisher =    {PMLR},
  %pdf = 	 {http://proceedings.mlr.press/v97/jagielski19a/jagielski19a.pdf},
  %url = 	 {https://proceedings.mlr.press/v97/jagielski19a.html}
@InProceedings{dpfairlearn,
  title = 	 {Differentially Private Fair Learning},
  author =       {Jagielski, Matthew and Kearns, Michael and Mao, Jieming and Oprea, Alina and Roth, Aaron and -Malvajerdi, Saeed Sharifi and Ullman, Jonathan},
  booktitle = 	 {International Conference on Machine Learning},
  pages = 	 {3000--3008},
  year = 	 {2019},
  volume = 	 {97},
}

@incollection{dpaccdisp,
title = {Differential Privacy Has Disparate Impact on Model Accuracy},
author = {Bagdasaryan, Eugene and Poursaeed, Omid and Shmatikov, Vitaly},
booktitle = {Advances in Neural Information Processing Systems},
pages = {15479--15488},
year = {2019}}

%isbn = {978-1-939133-06-9},
%address = {Santa Clara, CA},
%url = {https://www.usenix.org/conference/usenixsecurity19/presentation/jayaraman},
%publisher = {USENIX Association},
%month = aug,
@inproceedings {dpVacc,
author = {Bargav Jayaraman and David Evans},
title = {Evaluating Differentially Private Machine Learning in Practice},
booktitle = {USENIX Security Symposium},
year = {2019},
pages = {1895--1912},
}

%isbn = {9781450367110},
%publisher = {Association for Computing Machinery},
%address = {New York, NY, USA},
%url = {https://doi.org/10.1145/3314183.3323847},
@inproceedings{cummings,
author = {Cummings, Rachel and Gupta, Varun and Kimpara, Dhamma and Morgenstern, Jamie},
title = {On the Compatibility of Privacy and Fairness},
year = {2019},
doi = {10.1145/3314183.3323847},
booktitle = {Conference on User Modeling, Adaptation and Personalization},
pages = {309–315},
location = {Larnaca, Cyprus},
series = {UMAP'19 Adjunct}
}


@techreport{ec2019ethics,
  address = {Brussels},
  author = {{High-Level Expert Group on AI}},
  institution = {European Commission},
  language = {eng},
  month = apr,
  title = {Ethics guidelines for trustworthy AI},
  type = {Report},
  url = {https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai},
  year = {2019}
}

@inproceedings{nist,
  title={A Taxonomy and Terminology of Adversarial Machine Learning},
  author={Elham Tabassi and Kevin J. Burns and M. Hadjimichael and Andres Molina-Markham and Julian Sexton},
  url = {https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8269-draft.pdf},
  year={2019},
  booktitle = {NIST Interagency/Internal Report}
}

@inproceedings{dpia, 
title={Art. 35 {GDPR} Data protection impact assessment},
url={https://gdpr-info.eu/art-35-gdpr/}, 
author={European Union Law},
year={2018},
booktitle={General Data Protection Regulation (GDPR)} }

@article{ico, 
title={{AI} auditing and impact assessment: according to the UK information commissioner’s office}, ISSN={2730-5953, 2730-5961}, url={http://link.springer.com/10.1007/s43681-021-00039-2}, DOI={10.1007/s43681-021-00039-2}, 
journal={AI and Ethics}, 
author={Kazim, Emre and Denny, Danielle Mendes Thame and Koshiyama, Adriano}, 
year={2021}, 
month={Feb} }

@inproceedings{whitehouse, 
title={Guidance for Regulation of Artificial Intelligence Applications},
url={https://www.whitehouse.gov/wp-content/uploads/2020/11/M-21-06.pdf}, 
author={White House},
year = {2020},
booktitle={Memorandum For The Heads Of Executive Departments And Agencies} }

%metrics

@INPROCEEDINGS{memprivNattpriv,
  author={Zhao, Benjamin Zi Hao and Agrawal, Aviral and Coburn, Catisha and Asghar, Hassan Jameel and Bhaskar, Raghav and Kaafar, Mohamed Ali and Webb, Darren and Dickinson, Peter},
  booktitle={IEEE European Symposium on Security and Privacy}, 
  title={On the (In)Feasibility of Attribute Inference Attacks on Machine Learning Models}, 
  year={2021},
  pages={232-251},
  doi={10.1109/EuroSP51992.2021.00025}
}

@article{duddu2023sok,
  title={SoK: Unintended Interactions among Machine Learning Defenses and Risks},
  author={Duddu, Vasisht and Szyller, Sebastian and Asokan, N},
  journal={arXiv preprint arXiv:2312.04542},
  year={2023}
}


@inproceedings{suri2023dissecting,
  title={Dissecting distribution inference},
  author={Suri, Anshuman and Lu, Yifu and Chen, Yanjin and Evans, David},
  booktitle={2023 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML)},
  pages={150--164},
  year={2023},
  organization={IEEE}
}


@article{de2020overview,
  title={An overview of privacy in machine learning},
  author={De Cristofaro, Emiliano},
  journal={arXiv preprint arXiv:2005.08679},
  year={2020}
}


@article{pate2021fairness,
  title={A Fairness Analysis on Private Aggregation of Teacher Ensembles},
  author={Tran, Cuong and Dinh, My H and Beiter, Kyle and Fioretto, Ferdinando},
  journal={arXiv preprint arXiv:2109.08630},
  year={2021}
}

@article{fioretto2022differential,
  title={Differential Privacy and Fairness in Decisions and Learning Tasks: A Survey},
  author={Fioretto, Ferdinando and Tran, Cuong and Van Hentenryck, Pascal and Zhu, Keyu},
  journal={arXiv preprint arXiv:2202.08187},
  year={2022}
}


% attribute inference attacks in ML
%publisher = "Institute of Electrical and Electronics Engineers (IEEE)",
%address = "United States",
@inproceedings{zhao2021infeasibility,
title = "On the (in)feasibility of attribute inference attacks on machine learning models",
author = "Zhao, {Benjamin Zi Hao} and Aviral Agrawal and Catisha Coburn and Asghar, {Hassan Jameel} and Raghav Bhaskar and Kaafar, {Mohamed Ali} and Darren Webb and Peter Dickinson",
year = "2021",
doi = "10.1109/EuroSP51992.2021.00025",
pages = "232--251",
booktitle = "IEEE European Symposium on Security and Privacy",
serie = {EuroS&P '2021},
}


%isbn = {978-1-939133-31-1},
%address = {Boston, MA},
%url = {https://www.usenix.org/conference/usenixsecurity22/presentation/mehnaz},
%publisher = {USENIX Association},
%month = aug,
@inproceedings{MehnazAttInf,
author = {Shagufta Mehnaz and Sayanton V. Dibbo and Ehsanul Kabir and Ninghui Li and Elisa Bertino},
title = {Are Your Sensitive Attributes Private? Novel Model Inversion Attribute Inference Attacks on Classification Models},
booktitle = {USENIX Security Symposium},
year = {2022},
pages = {4579--4596},
}

%isbn = {9781450338325},
%publisher = {Association for Computing Machinery},
%address = {New York, NY, USA},
%%url = {https://doi.org/10.1145/2810103.2813677},
@inproceedings{fredrikson1,
author = {Fredrikson, Matt and Jha, Somesh and Ristenpart, Thomas},
title = {Model Inversion Attacks That Exploit Confidence Information and Basic Countermeasures},
year = {2015},
doi = {10.1145/2810103.2813677},
booktitle = {ACM SIGSAC Conference on Computer and Communications Security},
pages = {1322–1333},
location = {Denver, Colorado, USA},
series = {CCS '15}
}


%isbn = {9781931971157},
@inproceedings{fredrikson2,
author = {Fredrikson, Matthew and Lantz, Eric and Jha, Somesh and Lin, Simon and Page, David and Ristenpart, Thomas},
title = {Privacy in Pharmacogenetics: An End-to-End Case Study of Personalized Warfarin Dosing},
year = {2014},
booktitle = {USENIX Conference on Security Symposium},
pages = {17–32},
location = {San Diego, CA},
series = {SEC'14}
}

@inproceedings{Song2020Overlearning,
title={Overlearning Reveals Sensitive Attributes},
author={Congzheng Song and Vitaly Shmatikov},
booktitle={International Conference on Learning Representations},
year={2020}
}


%isbn = {9781450384544},
%publisher = {Association for Computing Machinery},
%address = {New York, NY, USA},
%url = {https://doi.org/10.1145/3460120.3484533},
@inproceedings{malekzadeh2021honestbutcurious,
author = {Malekzadeh, Mohammad and Borovykh, Anastasia and G\"{u}nd\"{u}z, Deniz},
title = {Honest-but-Curious Nets: Sensitive Attributes of Private Inputs Can Be Secretly Coded into the Classifiers' Outputs},
year = {2021},
doi = {10.1145/3460120.3484533},
booktitle = {ACM SIGSAC Conference on Computer and Communications Security},
pages = {825–844},
location = {Virtual Event, Republic of Korea},
series = {CCS '21}
}


@article{jayaraman2022attribute,
  title={Are Attribute Inference Attacks Just Imputation?},
  author={Jayaraman, Bargav and Evans, David},
  journal={arXiv preprint arXiv:2209.01292},
  year={2022}
}


@inproceedings{yeom,
  author={Yeom, Samuel and Giacomelli, Irene and Fredrikson, Matt and Jha, Somesh},
  booktitle={IEEE Computer Security Foundations Symposium}, 
  title={Privacy Risk in Machine Learning: Analyzing the Connection to Overfitting}, 
  year={2018},
  pages={268-282},
  doi={10.1109/CSF.2018.00027}
}


@inproceedings{Mahajan2020DoesLS,
  title={Does Learning Stable Features Provide Privacy Benefits for Machine Learning Models?},
  author={Divyat Mahajan, Shruti Tople, Amit Sharma},
  booktitle = {NeurIPS PPML Workshop},
  year={2020}
}

@inproceedings{Malekzadeh_2021,
	doi = {10.1145/3460120.3484533},  
	url = {https://doi.org/10.1145%2F3460120.3484533},  
	year = 2021,	month = {nov},  
	publisher = {{ACM}},  
	author = {Mohammad Malekzadeh and Anastasia Borovykh and Deniz Gündüz},  
	title = {Honest-but-Curious Nets: Sensitive Attributes of Private Inputs Can Be Secretly Coded into the Classifiers{\textquotesingle} Outputs},  
	booktitle = {Proceedings of the 2021 {ACM} {SIGSAC} Conference on Computer and Communications Security}}



@INPROCEEDINGS{meminf,
  author={Shokri, Reza and Stronati, Marco and Song, Congzheng and Shmatikov, Vitaly},
  booktitle={2017 IEEE Symposium on Security and Privacy (SP)}, 
  title={Membership Inference Attacks Against Machine Learning Models}, 
  year={2017},
  pages={3-18},
  doi={10.1109/SP.2017.41}}
  
@article{chang2021privacy,
  title={On the Privacy Risks of Algorithmic Fairness},
  author={Hongyang Chang and R. Shokri},
  journal={{2021 }IEEE European Symposium on Security and Privacy},
  year={2021},
  pages={292-303}
}

@article{duddu2022inferring,
  title={Inferring Sensitive Attributes from Model Explanations},
  author={Duddu, Vasisht and Boutet, Antoine},
  journal={arXiv preprint arXiv:2208.09967},
  year={2022}
}

%editor = {H. Larochelle and M. Ranzato and R. Hadsell and M. F. Balcan and H. Lin},
 %publisher = {Curran Associates, Inc.},
 %url = {https://proceedings.neurips.cc/paper/2020/file/6b8b8e3bd6ad94b985c1b1f1b7a94cb2-Paper.pdf},
@inproceedings{NEURIPS2020_6b8b8e3b,
 author = {Zhao, Han and Chi, Jianfeng and Tian, Yuan and Gordon, Geoffrey J},
 booktitle = {Advances in Neural Information Processing Systems},
 pages = {9485--9496},
 title = {Trade-offs and Guarantees of Adversarial Representation Learning for Information Obfuscation},
 volume = {33},
 year = {2020}
}



@ARTICLE{8515092,
author={S. A. {Osia} and A. {Taheri} and A. S. {Shamsabadi} and K. {Katevas} and H. {Haddadi} and H. R. {Rabiee}},
journal={IEEE Transactions on Knowledge and Data Engineering},
title={Deep Private-Feature Extraction},
year={2020},
volume={32},
number={1},
pages={54-66},
}



%eprint    = {1707.00075}
@article{advfair,
  author    = {Alex Beutel and Jilin Chen and Zhe Zhao and Ed H. Chi},
  title     = {Data Decisions and Theoretical Implications when Adversarially Learning Fair Representations},
  year      = {2017},
  publisher = {arXiv},
  doi = {10.48550/ARXIV.1707.00075},
}

%property inference attack

@article{propinf,
  title={Dataset-Level Attribute Leakage in Collaborative Learning},
  author={Zhang, Wanrong and Tople, Shruti and Ohrimenko, Olga},
  journal={arXiv:2006.07267},
  year={2020}
}

%month = sep,
@article{propinf2,
author = {Ateniese, Giuseppe and Mancini, Luigi V. and Spognardi, Angelo and Villani, Antonio and Vitali, Domenico and Felici, Giovanni},
title = {Hacking Smart Machines with Smarter Ones: How to Extract Meaningful Data from Machine Learning Classifiers},
year = {2015},
volume = {10},
number = {3},
journal = {Int. J. Secur. Netw.},
pages = {137–150}
}


%isbn = {9781450356930},
%publisher = {Association for Computing Machinery},
%address = {New York, NY, USA},
%url = {https://doi.org/10.1145/3243734.3243834},
@inproceedings{propinf3,
author = {Ganju, Karan and Wang, Qi and Yang, Wei and Gunter, Carl A. and Borisov, Nikita},
title = {Property Inference Attacks on Fully Connected Neural Networks Using Permutation Invariant Representations},
year = {2018},
doi = {10.1145/3243734.3243834},
booktitle = {ACM SIGSAC Conference on Computer and Communications Security},
pages = {619–633},
location = {Toronto, Canada},
series = {CCS '18}
}

@article{propinf4,
  title={Formalizing and Estimating Distribution Inference Risks},
  author={Suri, Anshuman and Evans, David},
  journal={Proceedings on Privacy Enhancing Technologies},
  year={2022}
}

@inproceedings{fedinference,
author={L. {Melis} and C. {Song} and E. {De Cristofaro} and V. {Shmatikov}},
booktitle={IEEE Symposium on Security and Privacy},
title={Exploiting Unintended Feature Leakage in Collaborative Learning},
year={2019},
pages={691-706}
}

@INPROCEEDINGS {ferryExploit,
author = {J. Ferry and U. Aivodji and S. Gambs and M. Huguet and M. Siala},
booktitle = {2023 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML)},
title = {Exploiting Fairness to Enhance Sensitive Attributes Reconstruction},
year = {2023},
volume = {},
issn = {},
pages = {18-41},
keywords = {training;measurement;learning systems;privacy;pipelines;training data;machine learning},
doi = {10.1109/SaTML54575.2023.00012},
url = {https://doi.ieeecomputersociety.org/10.1109/SaTML54575.2023.00012},
publisher = {IEEE Computer Society},
address = {Los Alamitos, CA, USA},
month = {feb}
}




% defences against attribute inference attacks

@inproceedings{10.5555/3042817.3042973,
author = {Zemel, Richard and Wu, Yu and Swersky, Kevin and Pitassi, Toniann and Dwork, Cynthia},
title = {Learning Fair Representations},
year = {2013},
booktitle = {International Conference on Machine Learning},
serie = {ICML '13},
}

%month = jan,
@article{10.5555/3122009.3208010,
author = {Hamm, Jihun},
title = {Minimax Filter: Learning to Preserve Privacy from Inference Attacks},
year = {2017},
volume = {18},
number = {1},
journal = {J. Mach. Learn. Res.},
pages = {4704–4734}
}

@inproceedings{10.5555/3327546.3327583,
author = {Moyer, Daniel and Gao, Shuyang and Brekelmans, Rob and Steeg, Greg Ver and Galstyan, Aram},
title = {Invariant Representations without Adversarial Training},
year = {2018},
booktitle = {Advances in Neural Information Processing Systems}
}

@inproceedings{10.5555/3294771.3294827,
author = {Xie, Qizhe and Dai, Zihang and Du, Yulun and Hovy, Eduard and Neubig, Graham},
title = {Controllable Invariance through Adversarial Feature Learning},
year = {2017},
booktitle = {Advances in Neural Information Processing Systems}
}

@InProceedings{pmlr-v80-madras18a,
  title = 	 {Learning Adversarially Fair and Transferable Representations},
  author =       {Madras, David and Creager, Elliot and Pitassi, Toniann and Zemel, Richard},
  pages = 	 {3384--3393},
  year = 	 {2018},
  volume = 	 {80},
  booktitle = 	 {Proceedings of Machine Learning Research},
}

@inproceedings{censoringadv,
title     = "Censoring Representations with an Adversary",
author    = "Harrison Edwards and Amos Storkey",
year      = "2016",
booktitle = {International Conference on Learning Representations}
}
@inproceedings{NIPS2017_48ab2f9b,
 author = {Louppe, Gilles and Kagan, Michael and Cranmer, Kyle},
 booktitle = {Advances in Neural Information Processing Systems},
 editor = {I. Guyon and U. Von Luxburg and S. Bengio and H. Wallach and R. Fergus and S. Vishwanathan and R. Garnett},
 pages = {},
 publisher = {Curran Associates, Inc.},
 title = {Learning to Pivot with Adversarial Networks},
 url = {https://proceedings.neurips.cc/paper_files/paper/2017/file/48ab2f9b45957ab574cf005eb8a76760-Paper.pdf},
 volume = {30},
 year = {2017}
}


%isbn = {9781450360128},
%publisher = {Association for Computing Machinery},
%address = {New York, NY, USA},
%url = {https://doi.org/10.1145/3278721.3278779},
@inproceedings{debiase,
author = {Zhang, Brian Hu and Lemoine, Blake and Mitchell, Margaret},
title = {Mitigating Unwanted Biases with Adversarial Learning},
year = {2018},
doi = {10.1145/3278721.3278779},
booktitle = {AAAI/ACM Conference on AI, Ethics, and Society},
pages = {335–340},
location = {New Orleans, LA, USA},
series = {AIES '18}
}

  %month = {10},
%pages = {},
@article{preprocessing,
author = {Kamiran, Faisal and Calders, Toon},
year = {2011},
title = {Data Pre-Processing Techniques for Classification without Discrimination},
volume = {33},
journal = {Knowledge and Information Systems},
doi = {10.1007/s10115-011-0463-8}
}

%series = 	 {Proceedings of Machine Learning Research},
  %month = 	 {10--15 Jul},
  %publisher =    {PMLR},
  %pdf = 	 {http://proceedings.mlr.press/v80/agarwal18a/agarwal18a.pdf},
  %url = 	 {https://proceedings.mlr.press/v80/agarwal18a.html},
@InProceedings{reductions,
  title = 	 {A Reductions Approach to Fair Classification},
  author =       {Agarwal, Alekh and Beygelzimer, Alina and Dudik, Miroslav and Langford, John and Wallach, Hanna},
  booktitle = 	 {International Conference on Machine Learning},
  pages = 	 {60--69},
  year = 	 {2018},
  volume = 	 {80},
}

@article{kifer2014pufferfish,
author = {Kifer, Daniel and Machanavajjhala, Ashwin},
title = {Pufferfish: A framework for mathematical privacy definitions},
year = {2014},
issue_date = {January 2014},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
volume = {39},
number = {1},
issn = {0362-5915},
url = {https://doi.org/10.1145/2514689},
doi = {10.1145/2514689},
journal = {ACM Trans. Database Syst.},
month = {jan},
articleno = {3},
numpages = {36},
keywords = {Privacy, differential privacy}
}

@inproceedings{song2017pufferfish,
  title={Pufferfish privacy mechanisms for correlated data},
  author={Song, Shuang and Wang, Yizhen and Chaudhuri, Kamalika},
  booktitle={Proceedings of the 2017 ACM International Conference on Management of Data},
  pages={1291--1306},
  year={2017}
}

@article{grinsztajn2022tree,
  title={Why do tree-based models still outperform deep learning on typical tabular data?},
  author={Grinsztajn, L{\'e}o and Oyallon, Edouard and Varoquaux, Ga{\"e}l},
  journal={Advances in neural information processing systems},
  volume={35},
  pages={507--520},
  year={2022}
}



@inproceedings {attriguard,
author = {Jinyuan Jia and Neil Zhenqiang Gong},
title = {AttriGuard: A Practical Defense Against Attribute Inference Attacks via Adversarial Machine Learning},
booktitle = {USENIX Security},
year = {2018},
pages = {513--529},
}


% fairness metrics

@article{fairmetric,
author  = {Muhammad Bilal Zafar and Isabel Valera and Manuel Gomez-Rodriguez and Krishna P. Gummadi},
title   = {Fairness Constraints: A Flexible Approach for Fair Classification},
journal = {Journal of Machine Learning Research},
year    = {2019},
volume  = {20},
number  = {75},
pages   = {1-42}
}

@inproceedings{fairmetric2,
author = {Hardt, Moritz and Price, Eric and Srebro, Nathan},
title = {Equality of Opportunity in Supervised Learning},
year = {2016},
booktitle = {Advances in Neural Information Processing Systems},
pages = {3323–3331}
}

@article{fairjustice,
author = {Alikhademi, Kiana and Drobina, Emma and Prioleau, Diandra and Richardson, Brianna and Purves, Duncan and Gilbert, Juan E.},
title = {A Review of Predictive Policing from the Perspective of Fairness},
year = {2022},
issue_date = {Mar 2022},
publisher = {Kluwer Academic Publishers},
address = {USA},
volume = {30},
number = {1},
issn = {0924-8463},
url = {https://doi.org/10.1007/s10506-021-09286-4},
doi = {10.1007/s10506-021-09286-4},
journal = {Artif. Intell. Law},
month = {mar},
pages = {1–17},
numpages = {17},
keywords = {Predictive policing, Algorithmic fairness, Fairness, AI in criminal justice}
}

  
@article{folk,
  title={Retiring Adult: New Datasets for Fair Machine Learning},
  author={Ding, Frances and Hardt, Moritz and Miller, John and Schmidt, Ludwig},
  journal={Advances in Neural Information Processing Systems},
  volume={34},
  year={2021}
}

@inproceedings{
    SDV,
    title={The Synthetic data vault},
    author={Patki, Neha and Wedge, Roy and Veeramachaneni, Kalyan},
    booktitle={IEEE International Conference on Data Science and Advanced Analytics (DSAA)},
    year={2016},
    pages={399-410},
    doi={10.1109/DSAA.2016.49},
    month={Oct}
}

@misc{dpbad,
  doi = {10.48550/ARXIV.1104.3913},
  
  url = {https://arxiv.org/abs/1104.3913},
  
  author = {Dwork, Cynthia and Hardt, Moritz and Pitassi, Toniann and Reingold, Omer and Zemel, Rich},
  
  keywords = {Computational Complexity (cs.CC), Computers and Society (cs.CY), FOS: Computer and information sciences, FOS: Computer and information sciences},
  
  title = {Fairness Through Awareness},
  
  publisher = {arXiv},
  
  year = {2011},
  
  copyright = {arXiv.org perpetual, non-exclusive license}
}

@INPROCEEDINGS{fairlog,

  author={Radovanović, Sandro and Petrović, Andrija and Delibašić, Boris and Suknović, Milija},

  booktitle={2020 International Conference on INnovations in Intelligent SysTems and Applications (INISTA)}, 

  title={Enforcing fairness in logistic regression algorithm}, 

  year={2020},

  volume={},

  number={},

  pages={1-7},

  doi={10.1109/INISTA49547.2020.9194676}}


@misc{fairreg,
      title={Fair Regression: Quantitative Definitions and Reduction-based Algorithms}, 
      author={Alekh Agarwal and Miroslav Dudík and Zhiwei Steven Wu},
      year={2019},
      eprint={1905.12843},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}



@InProceedings{fairaudit1,
  title = 	 {Blind Justice: Fairness with Encrypted Sensitive Attributes},
  author =       {Kilbertus, Niki and Gascon, Adria and Kusner, Matt and Veale, Michael and Gummadi, Krishna and Weller, Adrian},
  booktitle = 	 {Proceedings of the 35th International Conference on Machine Learning},
  pages = 	 {2630--2639},
  year = 	 {2018},
  editor = 	 {Dy, Jennifer and Krause, Andreas},
  volume = 	 {80},
  series = 	 {Proceedings of Machine Learning Research},
  month = 	 {10--15 Jul},
  publisher =    {PMLR},
  pdf = 	 {http://proceedings.mlr.press/v80/kilbertus18a/kilbertus18a.pdf},
  url = 	 {https://proceedings.mlr.press/v80/kilbertus18a.html},
}


@inproceedings{fairaudit2,
author = {Park, Saerom and Kim, Seongmin and Lim, Yeon-sup},
title = {Fairness Audit of Machine Learning Models with Confidential Computing},
year = {2022},
isbn = {9781450390965},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3485447.3512244},
doi = {10.1145/3485447.3512244},
booktitle = {Proceedings of the ACM Web Conference 2022},
pages = {3488–3499},
numpages = {12},
keywords = {Confidential computing, Algorithmic audit, Security and privacy, Fairness},
location = {Virtual Event, Lyon, France},
series = {WWW '22}
}

@inproceedings{fairaudit3,
author = {Segal, Shahar and Adi, Yossi and Pinkas, Benny and Baum, Carsten and Ganesh, Chaya and Keshet, Joseph},
title = {Fairness in the Eyes of the Data: Certifying Machine-Learning Models},
year = {2021},
isbn = {9781450384735},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3461702.3462554},
doi = {10.1145/3461702.3462554},
booktitle = {Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society},
pages = {926–935},
numpages = {10},
keywords = {machine-learning, cryptography, privacy, fairness},
location = {Virtual Event, USA},
series = {AIES '21}
}  

@article{yadav2024fairproof,
  title={FairProof: Confidential and Certifiable Fairness for Neural Networks},
  author={Yadav, Chhavi and Chowdhury, Amrita Roy and Boneh, Dan and Chaudhuri, Kamalika},
  journal={arXiv preprint arXiv:2402.12572},
  year={2024}
}

@inproceedings{khedr2023certifair,
  title={Certifair: A framework for certified global fairness of neural networks},
  author={Khedr, Haitham and Shoukry, Yasser},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  volume={37},
  number={7},
  pages={8237--8245},
  year={2023}
}

@article{urban20,
author = {Urban, Caterina and Christakis, Maria and W\"{u}stholz, Valentin and Zhang, Fuyuan},
title = {Perfectly parallel fairness certification of neural networks},
year = {2020},
issue_date = {November 2020},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
volume = {4},
number = {OOPSLA},
journal = {Proc. ACM Program. Lang.},
month = {nov},
articleno = {185},
numpages = {30},
keywords = {Static Analysis, Neural Networks, Fairness, Abstract Interpretation}
}

@inproceedings{
chugg2023auditing,
title={Auditing Fairness by Betting},
author={Ben Chugg and Santiago Cortes-Gomez and Bryan Wilder and Aaditya Ramdas},
booktitle={Thirty-seventh Conference on Neural Information Processing Systems},
year={2023},
url={https://openreview.net/forum?id=EEVpt3dJQj}
}

@inproceedings{yan2022active,
  title={Active fairness auditing},
  author={Yan, Tom and Zhang, Chicheng},
  booktitle={International Conference on Machine Learning},
  pages={24929--24962},
  year={2022},
  organization={PMLR}
}

@article{de2024fairness,
  title={Fairness Auditing with Multi-Agent Collaboration},
  author={de Vos, Martijn and Dhasade, Akash and Bourr{\'e}e, Jade Garcia and Kermarrec, Anne-Marie and Merrer, Erwan Le and Rottembourg, Benoit and Tredan, Gilles},
  journal={arXiv preprint arXiv:2402.08522},
  year={2024}
}

@inproceedings{ghosh2022algorithmic,
  title={Algorithmic fairness verification with graphical models},
  author={Ghosh, Bishwamittra and Basu, Debabrota and Meel, Kuldeep S},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  volume={36},
  number={9},
  pages={9539--9548},
  year={2022}
}

@inproceedings{ghosh2023biased,
  title={“How Biased are Your Features?”: Computing Fairness Influence Functions with Global Sensitivity Analysis},
  author={Ghosh, Bishwamittra and Basu, Debabrota and Meel, Kuldeep S},
  booktitle={Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency},
  pages={138--148},
  year={2023}
}

@article{FairSquare,
author = {Albarghouthi, Aws and D'Antoni, Loris and Drews, Samuel and Nori, Aditya V.},
title = {FairSquare: probabilistic verification of program fairness},
year = {2017},
issue_date = {October 2017},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
volume = {1},
number = {OOPSLA},
url = {https://doi.org/10.1145/3133904},
doi = {10.1145/3133904},
journal = {Proc. ACM Program. Lang.},
month = {oct},
articleno = {80},
numpages = {30},
keywords = {Algorithmic Fairness, Probabilistic Inference, Probabilistic Programming}
}

@article{saleiro2018aequitas,
  title={Aequitas: A bias and fairness audit toolkit},
  author={Saleiro, Pedro and Kuester, Benedict and Hinkson, Loren and London, Jesse and Stevens, Abby and Anisfeld, Ari and Rodolfa, Kit T and Ghani, Rayid},
  journal={arXiv preprint arXiv:1811.05577},
  year={2018}
}

@article{bastani2019probabilistic,
  title={Probabilistic verification of fairness properties via concentration},
  author={Bastani, Osbert and Zhang, Xin and Solar-Lezama, Armando},
  journal={Proceedings of the ACM on Programming Languages},
  volume={3},
  number={OOPSLA},
  pages={1--27},
  year={2019},
  publisher={ACM New York, NY, USA}
}

@article{adler2018auditing,
  title={Auditing black-box models for indirect influence},
  author={Adler, Philip and Falk, Casey and Friedler, Sorelle A and Nix, Tionney and Rybeck, Gabriel and Scheidegger, Carlos and Smith, Brandon and Venkatasubramanian, Suresh},
  journal={Knowledge and Information Systems},
  volume={54},
  pages={95--122},
  year={2018},
  publisher={Springer}
}

@inproceedings{black2020fliptest,
  title={Fliptest: fairness testing via optimal transport},
  author={Black, Emily and Yeom, Samuel and Fredrikson, Matt},
  booktitle={Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency},
  pages={111--121},
  year={2020}
}

@article{Justicia, 
title={Justicia: A Stochastic SAT Approach to Formally Verify Fairness}, 
volume={35}, 
url={https://ojs.aaai.org/index.php/AAAI/article/view/16925}, DOI={10.1609/aaai.v35i9.16925}, 
number={9}, journal={Proceedings of the AAAI Conference on Artificial Intelligence}, author={Ghosh, Bishwamittra and Basu, Debabrota and Meel, Kuldeep S.}, year={2021}, month={May}, pages={7554-7563} }