blob: d0f23f620e5cf6fae4ec7a0ae2c4873b50ff2b51 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
|
\begin{theorem}
\label{th:dpgood}
Maximum attack accuracy achievable by \aia in \ref{tm:hard} is equal to $\frac{1}{2}(1+\text{\demparlevel of }\targetmodel)$.
\end{theorem}
\begin{proof}
The set $B$ of function from $\{0,1\}$ to $\{0,1\}$ contains four elements: $b_0=0$, $b_1=id$, $b_2=1-id$ and $b,3=1$, where $\forall x, id(x) = x$.
For every $b\in B$ the balanced \aia accuracy is
$BA(b) = \frac{1}{2}(P(b\circ \hat{Y}=0|S=0) + P(b\circ \hat{Y}=1|S=1))$.
We have $BA(b_0) = BA(b_3) = \frac{1}{2}$, hence, we can discard those elements when solving the attack optimisation problem.
This problem writes $\text{max}_{b\in B}B(A(b)) = \text{max}(BA(b_1), BA(b_2))$.
We remark that $b_1\circ \hat{Y}=\hat{Y}$ and $b_2\circ \hat{Y}=1 - \hat{Y}$.
Hence,
{\footnotesize
\begin{align*}
BA(b_1) &= \frac{1}{2}(P(\hat{Y}=0|S=0) + P(\hat{Y}=1|S=1))\\
&=\frac{1}{2}(1+P(\hat{Y}=1|S=1) - P(\hat{Y}=1|S=0))\\
BA(b_2)&=\frac{1}{2}(1+P(\hat{Y}=1|S=0) - P(\hat{Y}=1|S=1))
\end{align*}
}
Thus,
{\footnotesize
\begin{align*}
&\text{max}_{b\in B}BA(b)
= \frac{1}{2}\left(1+\text{max}\left(
\begin{matrix}
P(\hat{Y}=0|S=0) -P(\hat{Y}=1|S=1)\\
P(\hat{Y}=1|S=0) -P(\hat{Y}=0|S=1)
\end{matrix}
\right)\right)\\
=&\frac{1}{2}(1+|P(\hat{Y}=1|S=1) - P(\hat{Y}=1|S=0)|)
\end{align*}
}
\end{proof}
|