summaryrefslogtreecommitdiff
path: root/biblio.bib
blob: 330552a4bdce21d49b40e938b65160889597c2ed (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
######################""
@book{cover1999elements,
  title={Elements of information theory},
  author={Cover, Thomas M},
  year={1999},
  publisher={John Wiley \& Sons}
}

@article{stadler2020synthetic,
  title={Synthetic data-A privacy mirage},
  author={Stadler, Theresa and Oprisanu, Bristena and Troncoso, Carmela},
  journal={arXiv preprint arXiv:2011.07018},
  year={2020},
  publisher={Nov}
}

@inproceedings{abowd2008protective,
  title={How protective are synthetic data?},
  author={Abowd, John M and Vilhuber, Lars},
  booktitle={International Conference on Privacy in Statistical Databases},
  pages={239--246},
  year={2008},
  organization={Springer}
}
@inproceedings{jordon2018pate,
  title={PATE-GAN: Generating synthetic data with differential privacy guarantees},
  author={Jordon, James and Yoon, Jinsung and Van Der Schaar, Mihaela},
  booktitle={International conference on learning representations},
  year={2018}
}
@inproceedings{abay2019privacy,
  title={Privacy preserving synthetic data release using deep learning},
  author={Abay, Nazmiye Ceren and Zhou, Yan and Kantarcioglu, Murat and Thuraisingham, Bhavani and Sweeney, Latanya},
  booktitle={Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2018, Dublin, Ireland, September 10--14, 2018, Proceedings, Part I 18},
  pages={510--526},
  year={2019},
  organization={Springer}
}

@inproceedings{ben2002theoretical,
  title={A theoretical framework for learning from a pool of disparate data sources},
  author={Ben-David, Shai and Gehrke, Johannes and Schuller, Reba},
  booktitle={Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining},
  pages={443--449},
  year={2002}
}

@inproceedings{chen2020differential,
  title={Differential privacy protection against membership inference attack on machine learning for genomic data},
  author={Chen, Junjie and Wang, Wendy Hui and Shi, Xinghua},
  booktitle={BIOCOMPUTING 2021: Proceedings of the Pacific Symposium},
  pages={26--37},
  year={2020},
  organization={World Scientific}
}
@article{rahman2018membership,
  title={Membership inference attack against differentially private deep learning model.},
  author={Rahman, Md Atiqur and Rahman, Tanzila and Lagani{\`e}re, Robert and Mohammed, Noman and Wang, Yang},
  journal={Trans. Data Priv.},
  volume={11},
  number={1},
  pages={61--79},
  year={2018}
}

@article{kivinen1997exponentiated,
  title={Exponentiated gradient versus gradient descent for linear predictors},
  author={Kivinen, Jyrki and Warmuth, Manfred K},
  journal={information and computation},
  volume={132},
  number={1},
  pages={1--63},
  year={1997},
  publisher={Elsevier}
}

@article{breiman2001random,
  title={Random forests},
  author={Breiman, Leo},
  journal={Machine learning},
  volume={45},
  pages={5--32},
  year={2001},
  publisher={Springer}
}

@article{shwartz2022tabular,
  title={Tabular data: Deep learning is not all you need},
  author={Shwartz-Ziv, Ravid and Armon, Amitai},
  journal={Information Fusion},
  volume={81},
  pages={84--90},
  year={2022},
  publisher={Elsevier}
}
@article{grinsztajn2022tree,
  title={Why do tree-based models still outperform deep learning on typical tabular data?},
  author={Grinsztajn, L{\'e}o and Oyallon, Edouard and Varoquaux, Ga{\"e}l},
  journal={Advances in neural information processing systems},
  volume={35},
  pages={507--520},
  year={2022}
}

@ARTICLE{1688199,

  author={Polikar, R.},

  journal={IEEE Circuits and Systems Magazine}, 

  title={Ensemble based systems in decision making}, 

  year={2006},

  volume={6},

  number={3},

  pages={21-45},

  doi={10.1109/MCAS.2006.1688199}}

@INPROCEEDINGS{1626170,

  author={Huang, Y.S. and Suen, C.Y.},

  booktitle={Proceedings of IEEE Conference on Computer Vision and Pattern Recognition}, 

  title={The behavior-knowledge space method for combination of multiple classifiers}, 

  year={1993},

  volume={},

  number={},

  pages={347-352},

  doi={10.1109/CVPR.1993.1626170}}



@article{hawkins2004problem,
  title={The problem of overfitting},
  author={Hawkins, Douglas M},
  journal={Journal of chemical information and computer sciences},
  volume={44},
  number={1},
  pages={1--12},
  year={2004},
  publisher={ACS Publications}
}
@inproceedings{ying2019overview,
  title={An overview of overfitting and its solutions},
  author={Ying, Xue},
  booktitle={Journal of physics: Conference series},
  volume={1168},
  pages={022022},
  year={2019},
  organization={IOP Publishing}
}

@misc{stateth,
    titre={Statistiques ethniques},
    howpublished={\url{https://www.insee.fr/fr/information/2108548}},
    note={Dernier accès: 2024-09-19}
}

@article{howard2000race,
  title={Race, socioeconomic status, and cause-specific mortality},
  author={Howard, George and Anderson, Roger T and Russell, Gregory and Howard, Virginia J and Burke, Gregory L},
  journal={Annals of epidemiology},
  volume={10},
  number={4},
  pages={214--223},
  year={2000},
  publisher={Elsevier}
}
@article{williams1996race,
  title={Race/ethnicity and socioeconomic status: measurement and methodological issues},
  author={Williams, David R},
  journal={International Journal of Health Services},
  volume={26},
  number={3},
  pages={483--505},
  year={1996},
  publisher={SAGE Publications Sage CA: Los Angeles, CA}
}

@article{singler2017roko,
  title={Roko's Basilisk or Pascal's? Thinking of Singularity Thought Experiments as Implicit Religion.},
  author={Singler, Beth},
  journal={Implicit Religion},
  volume={20},
  number={3},
  year={2017}
}


@incollection{green1972race,
  title={Race, social status, and criminal arrest},
  author={Green, Edward R},
  booktitle={Readings in Criminology and Penology},
  pages={267--283},
  year={1972},
  publisher={Columbia University Press}
}
@article{walsh2007psychopathy,
  title={Psychopathy and violent crime: A prospective study of the influence of socioeconomic status and ethnicity},
  author={Walsh, Zach and Kosson, David S},
  journal={Law and human behavior},
  volume={31},
  pages={209--229},
  year={2007},
  publisher={Springer}
}




@inproceedings{pelissier2024privacy,
author = {P\'{e}lissier, Samuel and Aalmoes, Jan and Mishra, Abhishek Kumar and Cunche, Mathieu and Roca, Vincent and Donsez, Didier},
title = {Privacy-Preserving Pseudonyms for LoRaWAN},
year = {2024},
isbn = {9798400705823},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3643833.3656120},
doi = {10.1145/3643833.3656120},
abstract = {LoRaWAN, a widely deployed LPWAN protocol, raises privacy concerns due to metadata exposure, particularly concerning the exploitation of stable device identifiers. For the first time in literature, we propose two privacy-preserving pseudonym schemes tailored for LoRaWAN: resolvable pseudonyms and sequential pseudonyms. We extensively evaluate their performance and applicability through theoretical analysis and simulations based on a large-scale real-world dataset of 71 million messages. We conclude that sequential pseudonyms are the best solution.},
booktitle = {Proceedings of the 17th ACM Conference on Security and Privacy in Wireless and Mobile Networks},
pages = {14–19},
numpages = {6},
keywords = {iot, link-layer, lorawan, privacy, pseudonyms},
location = {Seoul, Republic of Korea},
series = {WiSec '24}
}

  


@inproceedings{Lebrun_2022, series={Middleware ’22},
   title={MixNN: protection of federated learning against inference attacks by mixing neural network layers},
   volume={2948},
   url={http://dx.doi.org/10.1145/3528535.3565240},
   DOI={10.1145/3528535.3565240},
   booktitle={Proceedings of the 23rd ACM/IFIP International Middleware Conference},
   publisher={ACM},
   author={Lebrun, Thomas and Boutet, Antoine and Aalmoes, Jan and Baud, Adrien},
   year={2022},
   month=nov, pages={135–147},
   collection={Middleware ’22} }

@article{bergstra2015hyperopt,
  title={Hyperopt: a python library for model selection and hyperparameter optimization},
  author={Bergstra, James and Komer, Brent and Eliasmith, Chris and Yamins, Dan and Cox, David D},
  journal={Computational Science \& Discovery},
  volume={8},
  number={1},
  pages={014008},
  year={2015},
  publisher={IOP Publishing}
}

@misc{iris_53,
  author       = {Fisher, R. A.},
  title        = {{Iris}},
  year         = {1936},
  howpublished = {UCI Machine Learning Repository},
  note         = {{DOI}: https://doi.org/10.24432/C56C76}
}
@misc{chatgpt,
    title={ChatGPT},
    howpublished={\url{https://openai.com/chatgpt/}},
    note={Dernier accès: 2024-09-19}
}
@misc{stabledi,
    title={Stable Diffusion},
    howpublished={\url{https://stablediffusion.fr/france}},
    note={Dernier accès: 2024-09-19}
}
@inproceedings{maghded2020novel,
  title={A novel AI-enabled framework to diagnose coronavirus COVID-19 using smartphone embedded sensors: design study},
  author={Maghded, Halgurd S and Ghafoor, Kayhan Zrar and Sadiq, Ali Safaa and Curran, Kevin and Rawat, Danda B and Rabie, Khaled},
  booktitle={2020 IEEE 21st international conference on information reuse and integration for data science (IRI)},
  pages={180--187},
  year={2020},
  organization={IEEE}
}



@misc{yeom2018privacy,
      title={Privacy Risk in Machine Learning: Analyzing the Connection to Overfitting}, 
      author={Samuel Yeom and Irene Giacomelli and Matt Fredrikson and Somesh Jha},
      year={2018}
}
#Notes
@misc{dati2024declaration,
    title={Déclaration de Mme Rachida Dati, ministre de la culture, lors de l'installation de la Commission d'enrichissement de la langue française, le 27 mai 2024.}
    author={Dati, Rachida},
    year={2024}
}
@misc{wise2024,
    title={Wise 2024},
    howpublished={\url{wise2024-qatar.com}},
    note={Dernier accès: 2024-09-13}
}

###########################"
#Contexte
#Legal
@misc{defenseur2015emploi,
    title={Recruter avec des outils numériques sans discriminer},
    year={2015},
    howpublished={\url{https://juridique.defenseurdesdroits.fr/doc_num.php?explnum_id=18909}},
    note={Dernier accès: 2024-09-13}
}

@misc{defenseure2024lutter,
    title={Lutter contre les discriminations produites par les algorithmes et l’IA},
    year={2024},
    howpublished={\url{https://www.defenseurdesdroits.fr/sites/default/files/2024-02/FICHE7_AlgoIA_0.pdf}},
    note={Dernier accès: 2024-09-13}
}

@misc{defenseure,
    title={Lutter contre les discriminations et promouvoir l'égalité},
    howpublished={\url{defenseurdesdroits.fr/lutter-contre-les-discriminations-et-promouvoir-legalite-185}},
    note={Dernier accès: 2024-09-13}
}

######################################"
#Background
@BOOK{lecun2019quand,
  title     = "Quand la machine apprend",
  author    = "Le Cun, Yann",
  publisher = "Odile Jacob",
  month     =  oct,
  year      =  2019,
  address   = "Paris, France",
  language  = "fr"
}

#Set
@book{enderton1977elements,
  title={Elements of set theory},
  author={Enderton, Herbert B},
  year={1977},
  publisher={Academic press}
}

#Mesure
@misc{mesure,
    howpublished={\url{https://www-fourier.ujf-grenoble.fr/~edumas/integration.pdf}},
    title={Théorie de la mesure et de l’intégration},
    author={Gallay, Thierry},
    note={Dernier accès: 2024-08-29}
}

@misc{proba,
    title={\url{Intégration, Probabilitées et Processus Aléatoires}},
    howpublished={\url{https://www.imo.universite-paris-saclay.fr/~jean-francois.le-gall/IPPA2.pdf}},
    author={Le Gall, Jean-François},
    note={Dernier accès: 2024-08-29}
}

#Optimisation
@BOOK{ciarlet,
  title    = "Introduction {\`a} l'an{\'a}lyse num{\'e}rique matricielle et
              {\`a} l'optimisation: cours et exercices corrig{\'e}s",
  author   = "Ciarlet, Philippe G",
  year     =  2006,
  language = "fr"
}



#Machine learning

@BOOK{lecun2019quand,
  title     = "Quand la machine apprend",
  author    = "Le Cun, Yann",
  publisher = "Odile Jacob",
  month     =  oct,
  year      =  2019,
  address   = "Paris, France",
  language  = "fr"
}


@article{zou2016finding,
  title={Finding the best classification threshold in imbalanced classification},
  author={Zou, Quan and Xie, Sifa and Lin, Ziyu and Wu, Meihong and Ju, Ying},
  journal={Big Data Research},
  volume={5},
  pages={2--8},
  year={2016},
  publisher={Elsevier}
}


@article{bottou1991stochastic,
  title={Stochastic gradient learning in neural networks},
  author={Bottou, L{\'e}on and others},
  journal={Proceedings of Neuro-N{\i}mes},
  volume={91},
  number={8},
  pages={12},
  year={1991},
  publisher={Nimes}
}

@incollection{bottou2012stochastic,
  title={Stochastic gradient descent tricks},
  author={Bottou, L{\'e}on},
  booktitle={Neural Networks: Tricks of the Trade: Second Edition},
  pages={421--436},
  year={2012},
  publisher={Springer}
}

@article{amari1993back,
  title={Backpropagation and stochastic gradient descent method},
  author={Amari, Shun-ichi},
  journal={Neurocomputing},
  volume={5},
  number={4-5},
  pages={185--196},
  year={1993},
  publisher={Elsevier}
}

@article{kumari2017machine,
  title={Machine learning: A review on binary classification},
  author={Kumari, Roshan and Srivastava, Saurabh Kr},
  journal={International Journal of Computer Applications},
  volume={160},
  number={7},
  year={2017},
  publisher={Foundation of Computer Science}
}
@article{li2020statistical,
  title={Statistical hypothesis testing versus machine learning binary classification: Distinctions and guidelines},
  author={Li, Jingyi Jessica and Tong, Xin},
  journal={Patterns},
  volume={1},
  number={7},
  year={2020},
  publisher={Elsevier}
}
@article{canbek2022ptopi,
  title={PToPI: A comprehensive review, analysis, and knowledge representation of binary classification performance measures/metrics},
  author={Canbek, G{\"u}rol and Taskaya Temizel, Tugba and Sagiroglu, Seref},
  journal={SN Computer Science},
  volume={4},
  number={1},
  pages={13},
  year={2022},
  publisher={Springer}
}

@misc{insee1982parite,
    howpublished={\url{https://www.insee.fr/fr/statistiques/4768237}},
    title={Les cadres : de plus en plus de femmes},
    author={Forment, Virginie and Vidalenc, Joëlle},
    note={Dernier accès: 2024-08-26}
}

@article{chicco2021matthews,
  title={The Matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation},
  author={Chicco, Davide and T{\"o}tsch, Niklas and Jurman, Giuseppe},
  journal={BioData mining},
  volume={14},
  pages={1--22},
  year={2021},
  publisher={Springer}
}


    
#Equitée

@misc{servicepubdiscrimination,
    title="Qu'est-ce que la discrimination ?",
    howpublished={https://www.service-public.fr/particuliers/vosdroits/F38175},
    note={Dernier accès: 2024-09-13}
}


@BOOK{biddle2006adverse,
  title     = "Adverse impact and test validation",
  author    = "Biddle, Dan",
  publisher = "Gower Publishing",
  edition   =  2,
  month     =  jul,
  year      =  2006,
  address   = "London, England",
  language  = "en"
}


@article{scikit-learn,
  title={Scikit-learn: Machine Learning in {P}ython},
  author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
          and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
          and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
          Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
  journal={Journal of Machine Learning Research},
  volume={12},
  pages={2825--2830},
  year={2011}
}








############################################""
#Enjeux

#Explicabilite
@article{yuan2022explainability,
  title={Explainability in graph neural networks: A taxonomic survey},
  author={Yuan, Hao and Yu, Haiyang and Gui, Shurui and Ji, Shuiwang},
  journal={IEEE transactions on pattern analysis and machine intelligence},
  volume={45},
  number={5},
  pages={5782--5799},
  year={2022},
  publisher={IEEE}
}
@article{du2019techniques,
  title={Techniques for interpretable machine learning},
  author={Du, Mengnan and Liu, Ninghao and Hu, Xia},
  journal={Communications of the ACM},
  volume={63},
  number={1},
  pages={68--77},
  year={2019},
  publisher={ACM New York, NY, USA}
}

@article{rai2020explainable,
  title={Explainable AI: From black box to glass box},
  author={Rai, Arun},
  journal={Journal of the Academy of Marketing Science},
  volume={48},
  pages={137--141},
  year={2020},
  publisher={Springer}
}

@article{ucoglu2020current,
  title={Current machine learning applications in accounting and auditing},
  author={Ucoglu, Derya},
  journal={PressAcademia Procedia},
  volume={12},
  number={1},
  pages={1--7},
  year={2020},
  publisher={Pressacademia}
}

@article{choi2020identifying,
  title={Identifying machine learning techniques for classification of target advertising},
  author={Choi, Jin-A and Lim, Kiho},
  journal={ICT Express},
  volume={6},
  number={3},
  pages={175--180},
  year={2020},
  publisher={Elsevier}
}


#Securité
#Backdoor
@article{gao2020backdoor,
  title={Backdoor attacks and countermeasures on deep learning: A comprehensive review},
  author={Gao, Yansong and Doan, Bao Gia and Zhang, Zhi and Ma, Siqi and Zhang, Jiliang and Fu, Anmin and Nepal, Surya and Kim, Hyoungshick},
  journal={arXiv preprint arXiv:2007.10760},
  year={2020}
}

@inproceedings{doan2021lira,
  title={Lira: Learnable, imperceptible and robust backdoor attacks},
  author={Doan, Khoa and Lao, Yingjie and Zhao, Weijie and Li, Ping},
  booktitle={Proceedings of the IEEE/CVF international conference on computer vision},
  pages={11966--11976},
  year={2021}
}

#Confidentialité 
@misc{discordgpt,
    title={In-Channel Conversation Summaries},
    author={\url{https://support.discord.com/hc/en-us/profiles/2921470028-Buffy}},
    howpublished={\url{https://support.discord.com/hc/en-us/articles/12926016807575-In-Channel-Conversation-Summaries}},
    note={Dernier accès: 2024-08-26}
}


#Fairness
@article{dressel2018accuracy,
  title={The accuracy, fairness, and limits of predicting recidivism},
  author={Dressel, Julia and Farid, Hany},
  journal={Science advances},
  volume={4},
  number={1},
  pages={eaao5580},
  year={2018},
  publisher={American Association for the Advancement of Science}
}



#####################################################""
#Echelle institutionelle 

#Justice prédictive
@article{brayne2015predictive,
  title={Predictive policing},
  author={Brayne, Sarah and Rosenblat, Alex and Boyd, Danah},
  journal={Data \& Civil Rights: A New Era Of Policing And Justice},
  pages={2015--1027},
  year={2015}
}

@misc{soundthinking,
    howpublished={\url{https://www.soundthinking.com/}},
    title={Soundthinking},
    note={Dernier accès: 2024-08-16}
}


@article{
zhiyuan2020limits,
author = {Zhiyuan “Jerry” Lin  and Jongbin Jung  and Sharad Goel  and Jennifer Skeem },
title = {The limits of human predictions of recidivism},
journal = {Science Advances},
volume = {6},
number = {7},
pages = {eaaz0652},
year = {2020},
doi = {10.1126/sciadv.aaz0652},
URL = {https://www.science.org/doi/abs/10.1126/sciadv.aaz0652},
eprint = {https://www.science.org/doi/pdf/10.1126/sciadv.aaz0652},
abstract = {Statistical algorithms can outperform human predictions of recidivism. Dressel and Farid recently found that laypeople were as accurate as statistical algorithms in predicting whether a defendant would reoffend, casting doubt on the value of risk assessment tools in the criminal justice system. We report the results of a replication and extension of Dressel and Farid’s experiment. Under conditions similar to the original study, we found nearly identical results, with humans and algorithms performing comparably. However, algorithms beat humans in the three other datasets we examined. The performance gap between humans and algorithms was particularly pronounced when, in a departure from the original study, participants were not provided with immediate feedback on the accuracy of their responses. Algorithms also outperformed humans when the information provided for predictions included an enriched (versus restricted) set of risk factors. These results suggest that algorithms can outperform human predictions of recidivism in ecologically valid settings.}}

@misc{equivant,
    howpublished={\url{https://www.equivant.com/}},
    title={Equivant},
    note={Dernier accès: 2024-07-24}
}
@article{dildar2021skin,
  title={Skin cancer detection: a review using deep learning techniques},
  author={Dildar, Mehwish and Akram, Shumaila and Irfan, Muhammad and Khan, Hikmat Ullah and Ramzan, Muhammad and Mahmood, Abdur Rehman and Alsaiari, Soliman Ayed and Saeed, Abdul Hakeem M and Alraddadi, Mohammed Olaythah and Mahnashi, Mater Hussen},
  journal={International journal of environmental research and public health},
  volume={18},
  number={10},
  pages={5479},
  year={2021},
  publisher={MDPI}
}


####################################
#Médecine
@article{gulshan2016development,
  title={Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs},
  author={Gulshan, Varun and Peng, Lily and Coram, Marc and Stumpe, Martin C and Wu, Derek and Narayanaswamy, Arunachalam and Venugopalan, Subhashini and Widner, Kasumi and Madams, Tom and Cuadros, Jorge and others},
  journal={jama},
  volume={316},
  number={22},
  pages={2402--2410},
  year={2016},
  publisher={American Medical Association}
}

@article{quinn2022three,
  title={The three ghosts of medical AI: Can the black-box present deliver?},
  author={Quinn, Thomas P and Jacobs, Stephan and Senadeera, Manisha and Le, Vuong and Coghlan, Simon},
  journal={Artificial intelligence in medicine},
  volume={124},
  pages={102158},
  year={2022},
  publisher={Elsevier}
}


##################################
#Recrutement
@misc{fortune500,
    title={Fortune 500},
    howpublished={\url{https://fortune.com/ranking/global500/}},
    note={Dernier accès: 2024-07-24}
}

@article{ore2022opportunities,
  title={Opportunities and risks of artificial intelligence in recruitment and selection},
  author={Ore, Olajide and Sposato, Martin},
  journal={International Journal of Organizational Analysis},
  volume={30},
  number={6},
  pages={1771--1782},
  year={2022},
  publisher={Emerald Publishing Limited}
}

@inproceedings{al2021role,
  title={The role of artificial intelligence in recruitment process decision-making},
  author={Al-Alawi, Adel Ismail and Naureen, Misbah and AlAlawi, Ebtesam Ismaeel and Al-Hadad, Ahmed Abdulla Naser},
  booktitle={2021 International Conference on Decision Aid Sciences and Application (DASA)},
  pages={197--203},
  year={2021},
  organization={IEEE}
}

@misc{segal2021fairnesseyesdatacertifying,
      title={Fairness in the Eyes of the Data: Certifying Machine-Learning Models}, 
      author={Shahar Segal and Yossi Adi and Benny Pinkas and Carsten Baum and Chaya Ganesh and Joseph Keshet},
      year={2021},
      eprint={2009.01534},
      archivePrefix={arXiv},
      primaryClass={cs.AI},
      url={https://arxiv.org/abs/2009.01534}, 
}
@article{Hardt2016equality,
  author    = {Moritz Hardt and
               Eric Price and
               Nathan Srebro},
  title     = {Equality of Opportunity in Supervised Learning},
  journal   = {CoRR},
  volume    = {abs/1610.02413},
  year      = {2016},
  url       = {http://arxiv.org/abs/1610.02413},
  eprinttype = {arXiv},
  eprint    = {1610.02413},
  timestamp = {Tue, 26 Apr 2022 09:17:17 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/HardtPS16.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

@misc{Dwork2011fairness,
  doi = {10.48550/ARXIV.1104.3913},
  
  url = {https://arxiv.org/abs/1104.3913},
  
  author = {Dwork, Cynthia and Hardt, Moritz and Pitassi, Toniann and Reingold, Omer and Zemel, Rich},
  
  keywords = {Computational Complexity (cs.CC), Computers and Society (cs.CY), FOS: Computer and information sciences, FOS: Computer and information sciences},
  
  title = {Fairness Through Awareness},
  
  publisher = {arXiv},
  
  year = {2011},
  
  copyright = {arXiv.org perpetual, non-exclusive license}
}



@inproceedings{10.1145/3278721.3278779,
author = {Zhang, Brian Hu and Lemoine, Blake and Mitchell, Margaret},
title = {Mitigating Unwanted Biases with Adversarial Learning},
year = {2018},
isbn = {9781450360128},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3278721.3278779},
doi = {10.1145/3278721.3278779},
abstract = {Machine learning is a tool for building models that accurately represent input training data. When undesired biases concerning demographic groups are in the training data, well-trained models will reflect those biases. We present a framework for mitigating such biases by including a variable for the group of interest and simultaneously learning a predictor and an adversary. The input to the network X, here text or census data, produces a prediction Y, such as an analogy completion or income bracket, while the adversary tries to model a protected variable Z, here gender or zip code. The objective is to maximize the predictor's ability to predict Y while minimizing the adversary's ability to predict Z. Applied to analogy completion, this method results in accurate predictions that exhibit less evidence of stereotyping Z. When applied to a classification task using the UCI Adult (Census) Dataset, it results in a predictive model that does not lose much accuracy while achieving very close to equality of odds (Hardt, et al., 2016). The method is flexible and applicable to multiple definitions of fairness as well as a wide range of giradient-based learning models, including both regression and classification tasks.},
booktitle = {Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society},
pages = {335–340},
numpages = {6},
keywords = {multi-task learning, debiasing, adversarial learning, unbiasing},
location = {New Orleans, LA, USA},
series = {AIES '18}
}








#####################################################""
#Echelle individuelle 

@misc{applewatch,
    title={WatchOS 11 brings powerful health and fitness insights, and even more personalization and connectivity },
    howpublished={\url{https://www.apple.com/newsroom/2024/06/watchos-11-brings-powerful-health-and-fitness-insights/}},
    note={Dernier accès: 2024-07-24}
}

@inproceedings{barthelemy:hal-01837361,
  TITLE = {{Pl@ntNet, une plate-forme innovante d'agr{\'e}gation et partage d'observations botaniques}},
  AUTHOR = {Barth{\'e}l{\'e}my, Daniel and Boujemaa, Nozha and Molino, Jean-Fran{\c c}ois and Joly, Alexis and Go{\"e}au, Herv{\'e} and Baki{\'c}, Vera and Selmi, Souheil and Champ, Julien and Carre, Jennifer and Chouet, Mathias and Perronnet, Aur{\'e}lien and Vignau, Christelle and Dufour-Kowalski, Samuel and Affouard, Antoine and Barbe, Julien and Bonnet, Pierre},
  URL = {https://hal.science/hal-01837361},
  BOOKTITLE = {{International Conference ‘Botanists of the Twenty-first Century'}},
  ADDRESS = {Paris, France},
  ORGANIZATION = {{UNESCO}},
  HAL_LOCAL_REFERENCE = {DEVMP},
  EDITOR = {No{\"e}line R. Rakotoarisoa and Stephen Blackmore and Bernard Riera},
  PAGES = {191-197},
  YEAR = {2014},
  MONTH = Sep,
  KEYWORDS = {Pl@ntNet ; Botany ; Plateforme participative ; Observations botaniques},
  PDF = {https://hal.science/hal-01837361/file/DB_etal_plantnet_plateforme_2016_1.pdf},
  HAL_ID = {hal-01837361},
  HAL_VERSION = {v1},
}

@misc{plantnet,
    title={Pl@ntNet},
    howpublished={\url{https://identify.plantnet.org/}},
    note={Dernier accès: 2024-07-24}
}


@article{dunn2018wearables,
  title={Wearables and the medical revolution},
  author={Dunn, Jessilyn and Runge, Ryan and Snyder, Michael},
  journal={Personalized medicine},
  volume={15},
  number={5},
  pages={429--448},
  year={2018},
  publisher={Taylor \& Francis}
}

########################################"
#Intéret pour l'IA
#Google trend 
@misc{gtrend,
    title={Google trend Intelligence Artificielle},
    howpublished={\url{https://trends.google.com/trends/explore?date=all&geo=FR&q=intelligence%20artificielle&hl=en-US}},
    note={Dernier accès: 2024-07-24}
}

####################################""
#Stratégie AI de la France
@article{touvron2023llama,
  title={Llama 2: Open foundation and fine-tuned chat models},
  author={Touvron, Hugo and Martin, Louis and Stone, Kevin and Albert, Peter and Almahairi, Amjad and Babaei, Yasmine and Bashlykov, Nikolay and Batra, Soumya and Bhargava, Prajjwal and Bhosale, Shruti and others},
  journal={arXiv preprint arXiv:2307.09288},
  year={2023}
}
@misc{g5k,
    title={Grid5000},
    howpublished={\url{www.grid5000.fr}},
    note={Dernier accès: 2024-09-18}
}
@misc{jeanzay,
    title={Jean Zay, le supercalculateur le plus puissant de France pour la recherche}
    howpublished={\url{https://www.cnrs.fr/fr/presse/jean-zay-le-supercalculateur-le-plus-puissant-de-france-pour-la-recherche}},
    note={Dernier accès: 2024-09-18}
}
@misc{2030phase,
    title={La stratégie nationale pour l'intelligence artificielle},
    howpublished={\url{https://www.entreprises.gouv.fr/fr/numerique/enjeux/la-strategie-nationale-pour-l-ia}},
    note={Dernier accès: 2024-09-18}
}
@misc{coordinateur,
    title={France 2030 | Nomination du coordinateur national pour l’intelligence artificielle},
    howpublished={\url{https://www.info.gouv.fr/actualite/france-2030-nomination-du-coordinateur-national-pour-l-intelligence-artificielle}},
    note={Dernier accès: 2024-09-17}
}

@misc{loinumerique,
    title={LOI n° 2016-1321 du 7 octobre 2016 pour une République numérique},
    howpublished={\url{https://www.legifrance.gouv.fr/jorf/id/JORFSCTA000033202935}}
    note={Dernier accès: 2024-09-17}
}
@misc{kaggle,
    title={Kaggle},
    howpublished={\url{kaggle.com}},
    note={Dernier accès: 2024-09-17}
}
@misc{2030sante,
    title={Data Challenges en santé},
    howpublished={\url{https://www.bpifrance.fr/nos-appels-a-projets-concours/appel-a-projets-data-challenges-en-sante}},
    note={Dernier accès: 2024-09-17}
}

@misc{iabooster,
    title={IA Booster},
    howpublished={\url{https://www.bpifrance.fr/catalogue-offres/ia-booster-france-2030}},
    note={Dernier accès: 2024-09-17}
}
@misc{2030generatif,
    title={Accélérer l’usage de l’intelligence artificielle générative dans l’économie},
    howpublished={\url{https://www.bpifrance.fr/nos-appels-a-projets-concours/appel-a-projets-accelerer-lusage-de-lintelligence-artificielle-generative-dans-leconomie}},
    note={Dernier accès: 2024-09-17}
}

@misc{france2030,
    title={France 2030},
    howpublished={\url{https://www.info.gouv.fr/grand-dossier/france-2030}},
    note={Dernier accès: 2024-07-24}
}

@misc{stratfr,
    title={La stratégie nationale pour l'intelligence artificielle},
    howpublished={\url{https://www.entreprises.gouv.fr/fr/numerique/enjeux/la-strategie-nationale-pour-l-ia}},
    note={Dernier accès: 2024-07-24}
}

@book{villani2018donner,
  TITLE = {{Donner un sens {\`a} l'intelligence artificielle}},
  AUTHOR = {Villani, C{\'e}dric and Schoenauer, Marc and Bonnet, Yann and Berthet, Charly and Cornut, Anne-Charlotte and Levin, Fran{\c c}ois and Rondepierre, Bertrand},
  URL = {https://inria.hal.science/hal-01967551},
  PUBLISHER = {{Mission Villani sur l'intelligence artificielle}},
  YEAR = {2018},
  MONTH = Mar,
  PDF = {https://inria.hal.science/hal-01967551/file/9782111457089_Rapport_Villani_accessible.pdf},
  HAL_ID = {hal-01967551},
  HAL_VERSION = {v1},
}

%%%%%%%%%%%CLIMATE CHANGE BACKGROUND
@article{barnes2019viewing,
  title={Viewing forced climate patterns through an AI lens},
  author={Barnes, Elizabeth A and Hurrell, James W and Ebert-Uphoff, Imme and Anderson, Chuck and Anderson, David},
  journal={Geophysical Research Letters},
  volume={46},
  number={22},
  pages={13389--13398},
  year={2019},
  publisher={Wiley Online Library}
}

@article{slater2023hybrid,
  title={Hybrid forecasting: blending climate predictions with AI models},
  author={Slater, Louise J and Arnal, Louise and Boucher, Marie-Am{\'e}lie and Chang, Annie Y-Y and Moulds, Simon and Murphy, Conor and Nearing, Grey and Shalev, Guy and Shen, Chaopeng and Speight, Linda and others},
  journal={Hydrology and earth system sciences},
  volume={27},
  number={9},
  pages={1865--1889},
  year={2023},
  publisher={Copernicus Publications G{\"o}ttingen, Germany}
}

%%%%%%%%%%%%ENERGY BACKGROUND
@article{jin2020energy,
  title={Energy and AI},
  author={Jin, Donghan and Ocone, Raffaella and Jiao, Kui and Xuan, Jin},
  journal={Energy and AI},
  volume={1},
  pages={100002},
  year={2020},
  publisher={Elsevier}
}

@article{kumar2020distributed,
  title={Distributed energy resources and the application of AI, IoT, and blockchain in smart grids},
  author={Kumar, Nallapaneni Manoj and Chand, Aneesh A and Malvoni, Maria and Prasad, Kushal A and Mamun, Kabir A and Islam, FR and Chopra, Shauhrat S},
  journal={Energies},
  volume={13},
  number={21},
  pages={5739},
  year={2020},
  publisher={MDPI}
}

@article{kumari2020blockchain,
  title={Blockchain and AI amalgamation for energy cloud management: Challenges, solutions, and future directions},
  author={Kumari, Aparna and Gupta, Rajesh and Tanwar, Sudeep and Kumar, Neeraj},
  journal={Journal of Parallel and Distributed Computing},
  volume={143},
  pages={148--166},
  year={2020},
  publisher={Elsevier}
}

@article{ngarambe2020use,
  title={The use of artificial intelligence (AI) methods in the prediction of thermal comfort in buildings: Energy implications of AI-based thermal comfort controls},
  author={Ngarambe, Jack and Yun, Geun Young and Santamouris, Mat},
  journal={Energy and Buildings},
  volume={211},
  pages={109807},
  year={2020},
  publisher={Elsevier}
}


%%%%%OPEN AI 

@misc{openaibfm,
    title={OpenAI, cette société qui révolutionne l'intelligence artificielle},
    howpublished={\url{https://www.bfmtv.com/tech/intelligence-artificielle/open-ai-cette-societe-qui-revolutionne-l-intelligence-artificielle_DN-202311200564.html}},
    note={Dernier accès: 2024-07-24}
}

@misc{openaiinter,
    title={Intelligence artificielle : pourquoi Sam Altman, créateur de ChatGPT, a été débarqué d'OpenAI},
    howpublished={\url{https://www.radiofrance.fr/franceinter/ce-que-l-on-sait-du-renvoi-de-sam-altman-patron-d-openai-et-createur-de-chatgpt-5672369}},
    note={Dernier accès: 2024-07-24}
}

@misc{openaint,
    title={OpenAI Says It Has Begun Training a New Flagship A.I. Model},
    howpublished={\url{https://www.nytimes.com/2024/05/28/technology/openai-gpt4-new-model.html}},
    note={Dernier accès: 2024-07-24}
}

@misc{openaibig,
    title={ChatGPT sets record for fastest-growing user base - analyst note},
    howpublished={\url{https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/}},
    note={Dernier accès: 2024-07-24}
}

@misc{gptjournal,
    title={ChatGPT : le quotidien Le Monde signe un partenariat avec OpenAI, une première en France},
    howpublished={\url{https://www.radiofrance.fr/franceinter/podcasts/l-info-de-france-inter/les-doc-france-inter-du-jeudi-14-mars-3-7619379}},
    note={Dernier accès: 2024-07-24}
}

##################################
#Chine surveillance de la population

@article{beraja2023ai,
  title={AI-tocracy},
  author={Beraja, Martin and Kao, Andrew and Yang, David Y and Yuchtman, Noam},
  journal={The Quarterly Journal of Economics},
  volume={138},
  number={3},
  pages={1349--1402},
  year={2023},
  publisher={Oxford University Press}
}

################################
#Définition
@article{baum2017survey,
  title={A survey of artificial general intelligence projects for ethics, risk, and policy},
  author={Baum, Seth},
  journal={Global Catastrophic Risk Institute Working Paper},
  pages={17--1},
  year={2017}
}

@inproceedings{kuppa2021towards,
  title={Towards improving privacy of synthetic datasets},
  author={Kuppa, Aditya and Aouad, Lamine and Le-Khac, Nhien-An},
  booktitle={Annual Privacy Forum},
  pages={106--119},
  year={2021},
  organization={Springer}
}
@inproceedings{arpit2017closer,
  title={A closer look at memorization in deep networks},
  author={Arpit, Devansh and Jastrzebski, Stanislaw and Ballas, Nicolas and Krueger, David and Bengio, Emmanuel and Kanwal, Maxinder S and Maharaj, Tegan and Fischer, Asja and Courville, Aaron and Bengio, Yoshua and others},
  booktitle={International conference on machine learning},
  pages={233--242},
  year={2017},
  organization={PMLR}
}
@inproceedings{feldman2020does,
  title={Does learning require memorization? a short tale about a long tail},
  author={Feldman, Vitaly},
  booktitle={Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing},
  pages={954--959},
  year={2020}
}

@book{theetete,
    title={Théétète},
    author={Platon},
    year={300 av. JC}
}
@book{caverne,
    title={La République},
    author={Platon},
    year={300 av. JC}
}
@misc{dartmouth,
    title={Dartmouth summer research project on artificiale intelligence},
    howpublished={\url{https://raysolomonoff.com/dartmouth/boxa/dart564props.pdf}},
    author={
        McCarthy, John and Minsky, Marvin and Rochester Nathaniel and Shannon, Claude
    },
    note={Dernier accès: 2024-08-05}
}

@misc{banIA,
    title={En 2024, bannissons les termes "intelligence artificielle"},
    howpublished={\url{https://www.radiofrance.fr/franceculture/podcasts/le-biais-d-aurelie-jean/le-biais-d-aurelie-jean-chronique-du-mardi-02-janvier-2024-9653995}},
    author={Jean, Aurélie},
    note={Dernier accès: 2024-08-05}
}

@misc{gnuAI,
    title={Words to Avoid (or Use with Care) Because They Are Loaded or Confusing.},
    howpublished={\url{https://www.gnu.org/philosophy/words-to-avoid.html#ArtificialIntelligence}},
    note={Dernier accès: 2024-08-05}
}
@book{dico-int,
    title={Dictionaire de l'Académie francaise, 9° édition},
    note={\url{http://www.dictionnaire-academie.fr/article/A9I1608}, Dernier accès: 2024-08-05}
}
@book{dico-art,
    title={Dictionaire de l'Académie francaise, 9° édition},
    note={\url{http://www.dictionnaire-academie.fr/article/A9A2706},Dernier accès: 2024-08-05}
}
@book{dico-con,
    title={Dictionaire de l'Académie francaise, 9° édition},
    note={\url{https://www.dictionnaire-academie.fr/article/A9C3633},Dernier accès: 2024-08-16}
}
@misc{underscore,
    title={Cette nouvelle IA est bluffante},
    author={Chaîne Youtube Underscore},
    year={2024},
    howpublished={\url{https://www.youtube.com/watch?v=QUr93cD2ZUs}},
    note={Dernier accès: 2024-08-05}
}
@misc{grep,
    title={grep},
    howpublished={\url{https://www.gnu.org/software/grep/manual/grep.html}},
    note={Dernier accès: 2024-08-05}
}
@misc{ocrad,
    title={Ocrad},
    howpublished={\url{https://www.gnu.org/software/ocrad/ocrad.html}},
    note={Dernier accès: 2024-08-05}
}

@misc{aiact,
    howpublished={\url{https://eur-lex.europa.eu/eli/reg/2024/1689/oj}},

    note={Dernier accès: 2024-09-02},
    title={Regulation (EU) 2024/1689 of the European Parliament and of the Council of 13 June 2024 laying down harmonised rules on artificial intelligence and amending Regulations (EC) No 300/2008, (EU) No 167/2013, (EU) No 168/2013, (EU) 2018/858, (EU) 2018/1139 and (EU) 2019/2144 and Directives 2014/90/EU, (EU) 2016/797 and (EU) 2020/1828 (Artificial Intelligence Act) (Text with EEA relevance)}
}



#########################################
#Philosophie

@misc{siri,
    title={Siri},
    author={Apple},
    howpublished={\url{https://www.apple.com/siri/}},
    note={Dernier accès: 2024-08-26}
}

@misc{discord,
    title={Messagerie Discord},
    author={Discord},
    howpublished={\url{https://discord.com/}},
    note={Dernier accès: 2024-08-26}
}

@misc{googleai,
    title={Google assistant},
    author={Google},
    howpublished={\url{https://assistant.google.com/}},
    note={Dernier accès: 2024-08-26}
}

@misc{aaigpt,
    title={Apple inteligence ChatGPT},
    author={Apple},
    howpublished={\url{https://www.apple.com/newsroom/2024/06/introducing-apple-intelligence-for-iphone-ipad-and-mac/}},
    note={Dernier accès: 2024-08-26}
}



@BOOK{Freud2010-qq,
  title     = "Le moi et le {\c c}a",
  author    = "Freud, Sigmund",
  publisher = "Payot",
  year      =  2010,
  language  = "fr",
  note={Das Ich und das Es, 1923. Traduction Jean Laplanche}
}

@article{waters2014grade,
  title={Grade: Machine learning support for graduate admissions},
  author={Waters, Austin and Miikkulainen, Risto},
  journal={Ai Magazine},
  volume={35},
  number={1},
  pages={64--64},
  year={2014}
}


@book{rousseau1762contrat,
    title={Du contrat social ou Principes du droit politique},
    author={Rousseau, Jean-Jeacques},
    year={1762}
}

@BOOK{Poundstone1993-jr,
  title     = "Prisoner's Dilemma",
  author    = "Poundstone, William",
  publisher = "Anchor Books",
  month     =  jan,
  year      =  1993,
  address   = "New York, NY"
}


@article{wang2023not,
  title={Do-not-answer: A dataset for evaluating safeguards in llms},
  author={Wang, Yuxia and Li, Haonan and Han, Xudong and Nakov, Preslav and Baldwin, Timothy},
  journal={arXiv preprint arXiv:2308.13387},
  year={2023}
}

@article{bergeaud2023teletravail,
  title={T{\'e}l{\'e}travail et productivit{\'e} avant, pendant et apr{\`e}s la pand{\'e}mie de Covid-19/Telework and Productivity Before, During and After the COVID-19 Crisis},
  author={Bergeaud, Antonin and Cette, Gilbert and Drapala, Simon},
  journal={Economie et Statistique},
  volume={539},
  number={1},
  pages={77--93},
  year={2023},
  publisher={Pers{\'e}e-Portail des revues scientifiques en SHS}
}

@misc{metaverse,
    title={What is the metaverse?},
    author={Meta},
    howpublished={\url{https://about.meta.com/what-is-the-metaverse/}},
    note={Dernier accès: 2024-08-22}
}

@misc{applevision,
    title={Apple vision pro},
    howpublished={\url{https://www.apple.com/apple-vision-pro/}},
    author={Apple},
    note={Dernier accès: 2024-08-22}



@article{johnson2017ai,
  title={AI anxiety},
  author={Johnson, Deborah G and Verdicchio, Mario},
  journal={Journal of the Association for Information Science and Technology},
  volume={68},
  number={9},
  pages={2267--2270},
  year={2017},
  publisher={Wiley Online Library}
}

@misc{afi100,
    title={100 YEARS...100 MOVIES},
    author={AMERICAN FILM INSTITUTE},
    howpublished={\url{https://www.afi.com/afis-100-years-100-movies-10th-anniversary-edition/}},
    note={Dernier accès: 2024-08-21}
}


@article{bernays1928manipulating,
author = {Bernays, Edward L.},
title = {Manipulating Public Opinion: The Why and The How},
journal = {American Journal of Sociology},
volume = {33},
number = {6},
pages = {958-971},
year = {1928},
doi = {10.1086/214599},
URL = { 
    
        https://doi.org/10.1086/214599
},
eprint = { 
    
        https://doi.org/10.1086/214599
}
,
    abstract = { Public opinion, narrowly defined, is the thought of a society at a given time toward a given object; broadly conceived, it is the power of the group to sway the larger public in its attitude. Public opinion can be manipulated, but in teaching the public how to ask for what it wants the manipulator is safeguarding the public against his own possible aggressiveness. The method of the experimental psychologist is not as effective in the study of public opinion in the broad sense as is that of introspective psychology. To create and to change public opinion it is necessary to understand human motives, to know what special interests are represented by a given population, and to realize the function and limitations of the physical organs of approach to the public, such as the radio, the platform, the movie, the letter, the newspaper, etc. If the general principles of swaying public opinion are understood, a technique can be developed which, with the correct appraisal of the specific problem and the specific audience, can and has been used effectively in such widely different situations as changing the attitudes of whites toward Negroes in America, changing the buying habits of American women from felt hats to velvet, silk, and straw hats, changing the impression which the American electorate has of its President, introducing new musical instruments, and a variety of others. Group adherence is essential in changing the attitudes of the public. Authoritative and influential groups may become important channels of reaching the larger public. Ideas and situations must be made impressive and dramatic in order to overcome the inertia of established traditions and prejudices. }
}



@article{fearing1947influence,
author = {Franklin Fearing},
title ={Influence of the Movies on Attitudes and Behavior},

journal = {The ANNALS of the American Academy of Political and Social Science},
volume = {254},
number = {1},
pages = {70-79},
year = {1947},
doi = {10.1177/000271624725400112},

URL = { 
        https://doi.org/10.1177/000271624725400112
},
eprint = { 
        https://doi.org/10.1177/000271624725400112
}
}
@misc{roko,
    title={Solutions to the Altruist's burden: the Quantum Billionaire Trick},
    year={2010},
    author={Roko},
    howpublished={\url{https://rationalwiki.org/wiki/Roko%27s_basilisk/Original_post#Solutions_to_the_Altruist.27s_burden:_the_Quantum_Billionaire_Trick}},
    note={Dernier accès: 2024-08-22}
}
@misc{rokowiki,
    title={Roko's basilisk},
    howpublished={\url{https://old-wiki.lesswrong.com/wiki/Roko%27s_basilisk#Roko's_post}},
    note={Dernier accès: 2024-08-22}
}
@misc{slate,
    title={The Most Terrifying Thought Experiment of All Time},
    author={Auerbach, David},
    howpublished={\url{https://slate.com/technology/2014/07/rokos-basilisk-the-most-terrifying-thought-experiment-of-all-time.html}},
    note={Dernier accès: 2024-08-22}
}
@misc{rokomisc,
    title={A few misconceptions surrounding Roko's basilisk},
    author={Bensinger, Rob}
    howpublished={\url{https://www.lesswrong.com/posts/WBJZoeJypcNRmsdHx/a-few-misconceptions-surrounding-roko-s-basilisk}},
    note={Dernier accès: 2024-08-22}
}

@article{Singler_2018, title={Roko’s Basilisk or Pascal’s? Thinking of Singularity Thought Experiments as Implicit Religion}, volume={20},  url={https://journal.equinoxpub.com/IR/article/view/3226},  DOI={10.1558/imre.35900}, abstractNote={In 2010 a thought experiment speculating on the motivations and aims of a potential superintelligent Artificial Intelligence, sometimes known as the ‘Singularity’, caused uproar and anxiety on the forum board where it was initially posted. This paper considers that thought experiment’s debt to older forms of religious argument, the reactions from among the community, and how expectations about the Singularity as a being with agency can be considered to be an example of implicit religion. This is significant as the thought experiment appeared in a field of research, AI, considered by many to be secular due to its technological focus. The communities under discussion also explicitly express their aim of ‘perfecting’ human rationality, and place that ability in opposition to ‘religion’ as a derided object and the aims of ‘Goddists’ in general. This tension between overt atheism and secular communities’ return to religious tropes and narratives is relevant for the wider study of religion in the contemporary era.}, number={3}, journal={Implicit Religion}, author={Singler, Beth}, year={2018}, month={May}, pages={279–297} }

@misc{matrix,
    title={The Matrix},
    author={Wachowski and Silver and Pope},
    year={1999}
}

@misc{her,
    title={Her},
    author={Jonze, Spike},
    year={2013}
}

@misc{johansson,
    title={Scarlett Johansson’s Statement About Her Interactions With Sam Altman},
    howpublished={\url{https://www.nytimes.com/2024/05/20/technology/scarlett-johansson-openai-statement.html}},
    note={Dernier accès: 2024-08-21}
}


@book{bicentenaire,
    title={The Bicentennial Man},
    author={Asimov,Isaac},
    year={1976},
}


@misc{avenger,
    title={Avengers: Age of Ultron},
    author={ Whedon, Joss and Feige, Kevin},
    year={2015},
    note={Based on the comics by Stan Lee and Jack Kirby}
}
@misc{terminator,
    title={The Terminator},
    author={Cameron, James and Hurd, Gale Anne},
    year={1999}
}

@misc{2001odyssey,
    title={2001: A space odyssey},
    author={Kubrick, Stanley and Clarke, Arthur C. },
    year={1968}
}
@misc{futurama,
    title={Futurama},
    author={Groening, Matt},
    year={2003}
}

@misc{wargames,
    title={War games},
    author={Badham, John and Lasker, Lawrence and Parkes, Walter F. and Schneider,Harold},
    year={1983}
}

@book{assimovIrobot,
    title={I, Robot},
    year={1950},
    author={Isaac Asimov}
}

@book{cornu,
    title={Vocabulaire juridique},
    author={Cornu, Gérard},
    year={2014},
    note={Dixième édition}
}

@article{MARAKAS2000719,
title = {A theoretical model of differential social attributions toward computing technology: when the metaphor becomes the model},
journal = {International Journal of Human-Computer Studies},
volume = {52},
number = {4},
pages = {719-750},
year = {2000},
issn = {1071-5819},
doi = {https://doi.org/10.1006/ijhc.1999.0348},
url = {https://www.sciencedirect.com/science/article/pii/S1071581999903488},
author = {GEORGE M. MARAKAS and RICHARD D. JOHNSON and JONATHAN W. PALMER},
keywords = {anthropomorphism, symbolic computing, social acts, laws of control, computer self-efficiency.},
abstract = {This paper explores the use of metaphorical personification (anthropomorphism) as an aid to describing and understanding the complexities of computing technologies. This common and seemingly intuitive practice (it “reads”, “writes”, “thinks”, “is friendly”, “catches and transmits viruses”, etc.) has become the standard by which we formulate our daily communications, and often our formal training mechanisms, with regard to the technology. Both anecdotal and empirical sources have reported numerous scenarios in which computers have played a noticeably social role, thus being positioned more as a social actor than as a machine or “neutral tool.” In these accounts, human behavior has ranged from making social reference to the device (“It's really much smarter than me,”), to more overt social interactions including conversational interplay and display of common human emotions in response to an interaction. Drawing from behavioral psychology and attribution theory, a theoretical model of the phenomenon is offered from which several propositions are advanced regarding the nature of the behavior, positive and negative implications associated with extended use of this metaphor, and recommendations for research into this ubiquitous social phenomena. … I have encountered these situations before, and in every case they were the result of human error. -HAL 9000 from Arthur C. Clarke's 2001: A Space Odyssey}
}


@article{searle1980minds,
  title={Minds, brains, and programs},
  author={Searle, John R},
  journal={Behavioral and brain sciences},
  volume={3},
  number={3},
  pages={417--424},
  year={1980},
  publisher={Cambridge University Press}
}

@misc{oms,
    title={Rapport de l'Organisation Mondiale de la Santé},
    howpublished={\url{https://www.who.int/fr/news/item/28-06-2021-who-issues-first-global-report-on-ai-in-health-and-six-guiding-principles-for-its-design-and-use}},
    author={OMS},
    year={2021}
}


###############################################
#Synthetic 
@misc{carlini2022membershipinferenceattacksprinciples,
      title={Membership Inference Attacks From First Principles}, 
      author={Nicholas Carlini and Steve Chien and Milad Nasr and Shuang Song and Andreas Terzis and Florian Tramer},
      year={2022},
      eprint={2112.03570},
      archivePrefix={arXiv},
      primaryClass={cs.CR},
      url={https://arxiv.org/abs/2112.03570}, 
}

@article{brayne2015predictive,
  title={Predictive policing},
  author={Brayne, Sarah and Rosenblat, Alex and Boyd, Danah},
  journal={Data \& Civil Rights: A New Era Of Policing And Justice},
  pages={2015--1027},
  year={2015}
}

@inproceedings{barthelemy:hal-01837361,
  TITLE = {{Pl@ntNet, une plate-forme innovante d'agr{\'e}gation et partage d'observations botaniques}},
  AUTHOR = {Barth{\'e}l{\'e}my, Daniel and Boujemaa, Nozha and Molino, Jean-Fran{\c c}ois and Joly, Alexis and Go{\"e}au, Herv{\'e} and Baki{\'c}, Vera and Selmi, Souheil and Champ, Julien and Carre, Jennifer and Chouet, Mathias and Perronnet, Aur{\'e}lien and Vignau, Christelle and Dufour-Kowalski, Samuel and Affouard, Antoine and Barbe, Julien and Bonnet, Pierre},
  URL = {https://hal.science/hal-01837361},
  BOOKTITLE = {{International Conference ‘Botanists of the Twenty-first Century'}},
  ADDRESS = {Paris, France},
  ORGANIZATION = {{UNESCO}},
  HAL_LOCAL_REFERENCE = {DEVMP},
  EDITOR = {No{\"e}line R. Rakotoarisoa and Stephen Blackmore and Bernard Riera},
  PAGES = {191-197},
  YEAR = {2014},
  MONTH = Sep,
  KEYWORDS = {Pl@ntNet ; Botany ; Plateforme participative ; Observations botaniques},
  PDF = {https://hal.science/hal-01837361/file/DB_etal_plantnet_plateforme_2016_1.pdf},
  HAL_ID = {hal-01837361},
  HAL_VERSION = {v1},
}

@misc{plantnet,
    title={Pl@ntNet},
    howpublished={\url{https://identify.plantnet.org/}},
    note={Dernier accès: 2024-07-24}
}


@article{dunn2018wearables,
  title={Wearables and the medical revolution},
  author={Dunn, Jessilyn and Runge, Ryan and Snyder, Michael},
  journal={Personalized medicine},
  volume={15},
  number={5},
  pages={429--448},
  year={2018},
  publisher={Taylor \& Francis}
}

@misc{gtrend,
    title={Google trend Intelligence Artificielle},
    howpublished={\url{https://trends.google.com/trends/explore?date=all&geo=FR&q=intelligence%20artificielle&hl=en-US}},
    note={Dernier accès: 2024-07-24}
}

@misc{france2030,
    title={France 2030},
    howpublished={\url{https://www.info.gouv.fr/grand-dossier/france-2030}},
    note={Dernier accès: 2024-07-24}
}

@misc{stratfr,
    title={La stratégie nationale pour l'intelligence artificielle},
    howpublished={\url{https://www.entreprises.gouv.fr/fr/numerique/enjeux/la-strategie-nationale-pour-l-ia}},
    note={Dernier accès: 2024-07-24}
}

@misc{applewatch,
    title={WatchOS 11 brings powerful health and fitness insights, and even more personalization and connectivity },
    howpublished={\url{https://www.apple.com/newsroom/2024/06/watchos-11-brings-powerful-health-and-fitness-insights/}},
    note={Dernier accès: 2024-07-24}
}

%%%%%%%%%%%CLIMATE CHANGE BACKGROUND
@article{barnes2019viewing,
  title={Viewing forced climate patterns through an AI lens},
  author={Barnes, Elizabeth A and Hurrell, James W and Ebert-Uphoff, Imme and Anderson, Chuck and Anderson, David},
  journal={Geophysical Research Letters},
  volume={46},
  number={22},
  pages={13389--13398},
  year={2019},
  publisher={Wiley Online Library}
}

@article{slater2023hybrid,
  title={Hybrid forecasting: blending climate predictions with AI models},
  author={Slater, Louise J and Arnal, Louise and Boucher, Marie-Am{\'e}lie and Chang, Annie Y-Y and Moulds, Simon and Murphy, Conor and Nearing, Grey and Shalev, Guy and Shen, Chaopeng and Speight, Linda and others},
  journal={Hydrology and earth system sciences},
  volume={27},
  number={9},
  pages={1865--1889},
  year={2023},
  publisher={Copernicus Publications G{\"o}ttingen, Germany}
}

%%%%%%%%%%%%ENERGY BACKGROUND
@article{jin2020energy,
  title={Energy and AI},
  author={Jin, Donghan and Ocone, Raffaella and Jiao, Kui and Xuan, Jin},
  journal={Energy and AI},
  volume={1},
  pages={100002},
  year={2020},
  publisher={Elsevier}
}

@article{kumar2020distributed,
  title={Distributed energy resources and the application of AI, IoT, and blockchain in smart grids},
  author={Kumar, Nallapaneni Manoj and Chand, Aneesh A and Malvoni, Maria and Prasad, Kushal A and Mamun, Kabir A and Islam, FR and Chopra, Shauhrat S},
  journal={Energies},
  volume={13},
  number={21},
  pages={5739},
  year={2020},
  publisher={MDPI}
}

@article{kumari2020blockchain,
  title={Blockchain and AI amalgamation for energy cloud management: Challenges, solutions, and future directions},
  author={Kumari, Aparna and Gupta, Rajesh and Tanwar, Sudeep and Kumar, Neeraj},
  journal={Journal of Parallel and Distributed Computing},
  volume={143},
  pages={148--166},
  year={2020},
  publisher={Elsevier}
}

@article{ngarambe2020use,
  title={The use of artificial intelligence (AI) methods in the prediction of thermal comfort in buildings: Energy implications of AI-based thermal comfort controls},
  author={Ngarambe, Jack and Yun, Geun Young and Santamouris, Mat},
  journal={Energy and Buildings},
  volume={211},
  pages={109807},
  year={2020},
  publisher={Elsevier}
}


%%%%%OPEN AI 

@misc{openaibfm,
    title={OpenAI, cette société qui révolutionne l'intelligence artificielle},
    howpublished={\url{https://www.bfmtv.com/tech/intelligence-artificielle/open-ai-cette-societe-qui-revolutionne-l-intelligence-artificielle_DN-202311200564.html}},
    note={Dernier accès: 2024-07-24}
}

@misc{openaiinter,
    title={Intelligence artificielle : pourquoi Sam Altman, créateur de ChatGPT, a été débarqué d'OpenAI},
    howpublished={\url{https://www.radiofrance.fr/franceinter/ce-que-l-on-sait-du-renvoi-de-sam-altman-patron-d-openai-et-createur-de-chatgpt-5672369}},
    note={Dernier accès: 2024-07-24}
}

@misc{openaint,
    title={OpenAI Says It Has Begun Training a New Flagship A.I. Model},
    howpublished={\url{https://www.nytimes.com/2024/05/28/technology/openai-gpt4-new-model.html}},
    note={Dernier accès: 2024-07-24}
}

@misc{openaibg,
    title={ChatGPT sets record for fastest-growing user base - analyst note},
    howpublished={\url{https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/}},
    note={Dernier accès: 2024-07-24}
}

@misc{gptjournal,
    title={ChatGPT : le quotidien Le Monde signe un partenariat avec OpenAI, une première en France},
    howpublished={\url{https://www.radiofrance.fr/franceinter/podcasts/l-info-de-france-inter/les-doc-france-inter-du-jeudi-14-mars-3-7619379}},
    note={Dernier accès: 2024-07-24}
}

@article{beraja2023ai,
  title={AI-tocracy},
  author={Beraja, Martin and Kao, Andrew and Yang, David Y and Yuchtman, Noam},
  journal={The Quarterly Journal of Economics},
  volume={138},
  number={3},
  pages={1349--1402},
  year={2023},
  publisher={Oxford University Press}
}


@article{EO,
  author    = {Moritz Hardt and
               Eric Price and
               Nathan Srebro},
  title     = {Equality of Opportunity in Supervised Learning},
  journal   = {CoRR},
  volume    = {abs/1610.02413},
  year      = {2016},
  url       = {http://arxiv.org/abs/1610.02413},
  eprinttype = {arXiv},
  eprint    = {1610.02413},
  timestamp = {Tue, 26 Apr 2022 09:17:17 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/HardtPS16.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

@article{hawkins2004problem,
  title={The problem of overfitting},
  author={Hawkins, Douglas M},
  journal={Journal of chemical information and computer sciences},
  volume={44},
  number={1},
  pages={1--12},
  year={2004},
  publisher={ACS Publications}
}


@misc{vgg16,
      title={Very Deep Convolutional Networks for Large-Scale Image Recognition}, 
      author={Karen Simonyan and Andrew Zisserman},
      year={2015},
      eprint={1409.1556},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/1409.1556}, 
}
@misc{CGAN,
      title={Conditional Generative Adversarial Nets}, 
      author={Mehdi Mirza and Simon Osindero},
      year={2014},
      eprint={1411.1784},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/1411.1784}, 
}
@ARTICLE{cnn,

  author={Rawat, Waseem and Wang, Zenghui},

  journal={Neural Computation}, 

  title={Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review}, 

  year={2017},

  volume={29},

  number={9},

  pages={2352-2449},

  keywords={},

  doi={10.1162/neco_a_00990}}

@misc{dcgan,
      title={Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks}, 
      author={Alec Radford and Luke Metz and Soumith Chintala},
      year={2016},
      eprint={1511.06434},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/1511.06434}
}
@inproceedings{gan,
author = {Goodfellow, Ian J. and Pouget-Abadie, Jean and Mirza, Mehdi and Xu, Bing and Warde-Farley, David and Ozair, Sherjil and Courville, Aaron and Bengio, Yoshua},
title = {Generative adversarial nets},
year = {2014},
publisher = {MIT Press},
address = {Cambridge, MA, USA},
booktitle = {Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2},
pages = {2672–2680},
numpages = {9},
location = {Montreal, Canada},
series = {NIPS'14}
}
@misc{ctgan,
      title={Modeling Tabular data using Conditional GAN}, 
      author={Lei Xu and Maria Skoularidou and Alfredo Cuesta-Infante and Kalyan Veeramachaneni},
      year={2019},
      eprint={1907.00503},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/1907.00503}, 
}
@article{bellovin2019privacy,
  title={Privacy and synthetic datasets},
  author={Bellovin, Steven M and Dutta, Preetam K and Reitinger, Nathan},
  journal={Stan. Tech. L. Rev.},
  volume={22},
  pages={1},
  year={2019},
  publisher={HeinOnline}
}

@inproceedings{ping2017datasynthesizer,
  title={Datasynthesizer: Privacy-preserving synthetic datasets},
  author={Ping, Haoyue and Stoyanovich, Julia and Howe, Bill},
  booktitle={Proceedings of the 29th International Conference on Scientific and Statistical Database Management},
  pages={1--5},
  year={2017}
}

@inproceedings{kuppa2021towards,
  title={Towards improving privacy of synthetic datasets},
  author={Kuppa, Aditya and Aouad, Lamine and Le-Khac, Nhien-An},
  booktitle={Annual Privacy Forum},
  pages={106--119},
  year={2021},
  organization={Springer}
}

@article{tai2023user,
  title={User-Driven Synthetic Dataset Generation with Quantifiable Differential Privacy},
  author={Tai, Bo-Chen and Tsou, Yao-Tung and Li, Szu-Chuang and Huang, Yennun and Tsai, Pei-Yuan and Tsai, Yu-Cheng},
  journal={IEEE Transactions on Services Computing},
  year={2023},
  publisher={IEEE}
}
@article{stadler2020synthetic,
  title={Synthetic data-A privacy mirage},
  author={Stadler, Theresa and Oprisanu, Bristena and Troncoso, Carmela},
  journal={arXiv preprint arXiv:2011.07018},
  year={2020},
  publisher={Nov}
}

@inproceedings{jordon2021hide,
  title={Hide-and-seek privacy challenge: Synthetic data generation vs. patient re-identification},
  author={Jordon, James and Jarrett, Daniel and Saveliev, Evgeny and Yoon, Jinsung and Elbers, Paul and Thoral, Patrick and Ercole, Ari and Zhang, Cheng and Belgrave, Danielle and van der Schaar, Mihaela},
  booktitle={NeurIPS 2020 Competition and Demonstration Track},
  pages={206--215},
  year={2021},
  organization={PMLR}
}

@inproceedings{abadi2016deep,
  title={Deep learning with differential privacy},
  author={Abadi, Martin and Chu, Andy and Goodfellow, Ian and McMahan, H Brendan and Mironov, Ilya and Talwar, Kunal and Zhang, Li},
  booktitle={Proceedings of the 2016 ACM SIGSAC conference on computer and communications security},
  pages={308--318},
  year={2016}
}

@inproceedings{shokri2017membership,
  title={Membership inference attacks against machine learning models},
  author={Shokri, Reza and Stronati, Marco and Song, Congzheng and Shmatikov, Vitaly},
  booktitle={2017 IEEE symposium on security and privacy (SP)},
  pages={3--18},
  year={2017},
  organization={IEEE}
}

@article{ding2021retiring,
  title={Retiring Adult: New Datasets for Fair Machine Learning},
  author={Ding, Frances and Hardt, Moritz and Miller, John and Schmidt, Ludwig},
  journal={Advances in Neural Information Processing Systems},
  volume={34},
  year={2021}
}

@inproceedings{zhifei2017cvpr,
  title={Age Progression/Regression by Conditional Adversarial Autoencoder},
  author={Zhang, Zhifei and Song, Yang and Qi, Hairong},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2017},
  organization={IEEE}
}

@misc{carlini2022membership,
      title={Membership Inference Attacks From First Principles}, 
      author={Nicholas Carlini and Steve Chien and Milad Nasr and Shuang Song and Andreas Terzis and Florian Tramer},
      year={2022},
      eprint={2112.03570},
      archivePrefix={arXiv},
      primaryClass={cs.CR}
}

@inproceedings{salem2023sok,
  title={SoK: Let the privacy games begin! A unified treatment of data inference privacy in machine learning},
  author={Salem, Ahmed and Cherubin, Giovanni and Evans, David and K{\"o}pf, Boris and Paverd, Andrew and Suri, Anshuman and Tople, Shruti and Zanella-B{\'e}guelin, Santiago},
  booktitle={Security \& Privacy},
  pages={327--345},
  year={2023},
}
%
  organization={IEEE}


@inproceedings{ijcai2022p766,
  title     = {Differential Privacy and Fairness in Decisions and Learning Tasks: A Survey},
  author    = {Fioretto, Ferdinando and Tran, Cuong and Van Hentenryck, Pascal and Zhu, Keyu},
  booktitle = {International Joint Conference on
               Artificial Intelligence},
  
  pages     = {5470--5477},
  year      = {2022},
  month     = {7},
  
}
%publisher = {International Joint Conferences on Artificial Intelligence Organization},
  editor    = {Lud De Raedt},
note      = {Survey Track},
  doi       = {10.24963/ijcai.2022/766},
  url       = {https://doi.org/10.24963/ijcai.2022/766},


@article{accfairtradeoff,
author = {Pinzon, Carlos and Palamidessi, Catuscia and Piantanida, Pablo and Valencia, Frank},
year = {2023},
month = {05},
pages = {1-30},
title = {On the incompatibility of accuracy and equal opportunity},
journal = {Machine Learning},
}
%
doi = {10.1007/s10994-023-06331-y}

@article{rodolfa2021empirical,
  title={Empirical observation of negligible fairness--accuracy trade-offs in machine learning for public policy},
  author={Rodolfa, Kit T and Lamba, Hemank and Ghani, Rayid},
  journal={Nature Machine Intelligence},
  volume={3},
  number={10},
  pages={896--904},
  year={2021},
}
%
  publisher={Nature Publishing Group UK London}

@article{zhai2022understanding,
  title={Understanding why generalized reweighting does not improve over ERM},
  author={Zhai, Runtian and Dan, Chen and Kolter, Zico and Ravikumar, Pradeep},
  booktitle={International Conference on Learning Representation},
  year={2023}
}

@article{
veldanda2022fairness,
title={Fairness via In-Processing in the Over-parameterized Regime: A Cautionary Tale with MinDiff Loss},
author={Akshaj Kumar Veldanda and Ivan Brugere and Jiahao Chen and Sanghamitra Dutta and Alan Mishler and Siddharth Garg},
journal={Transactions on Machine Learning Research},
issn={2835-8856},
year={2023},

}
%url={https://openreview.net/forum?id=f4VyYhkRvi},
note={}

%  general
% url = {https://arxiv.org/abs/2206.10923},
@misc{arxivmichael,
  doi = {10.48550/ARXIV.2206.10923},
  author = {Maheshwari, Gaurav and Perrot, Michaël},
  title = {FairGrad: Fairness Aware Gradient Descent},
  publisher = {arXiv},
  year = {2022},
}


@InProceedings{classIMb1,
  title = 	 {Class-Imbalanced Semi-Supervised Learning with Adaptive Thresholding},
  author =       {Guo, Lan-Zhe and Li, Yu-Feng},
  booktitle = 	 {International Conference on Machine Learning},
  pages = 	 {8082--8094},
  year = 	 {2022},
  editor = 	 {Chaudhuri, Kamalika and Jegelka, Stefanie and Song, Le and Szepesvari, Csaba and Niu, Gang and Sabato, Sivan},
  volume = 	 {162},  
  month = 	 {17--23 Jul},

}
%
  pdf = 	 {https://proceedings.mlr.press/v162/guo22e/guo22e.pdf},
  url = 	 {https://proceedings.mlr.press/v162/guo22e.html}
series = 	 {Proceedings of Machine Learning Research},
  publisher =    {PMLR},

@article{classIMb2,
  title={Deep learning model calibration for improving performance in class-imbalanced medical image classification tasks},
  author={Sivaramakrishnan Rajaraman and Prasanth Ganesan and Sameer K. Antani},
  journal={PLoS ONE},
  year={2021},
  volume={17},
}
%
  url={https://api.semanticscholar.org/CorpusID:238259577}

@misc{classIMb3,
	author = {Jason Brownlee},
	title = {{A} {G}entle {I}ntroduction to {T}hreshold-{M}oving for {I}mbalanced {C}lassification - {M}achine{L}earning{M}astery.com},
	year = {},
	note = {[Accessed 31-08-2023]},
} 
%issn = {0022-0000},
%url = {https://www.sciencedirect.com/science/article/pii/S002200009791504X},
@article{saddlepointsolve,
title = {A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting},
journal = {Journal of Computer and System Sciences},
volume = {55},
number = {1},
pages = {119-139},
year = {1997},
author = {Yoav Freund and Robert E Schapire}
}
%
doi = {10.1006/jcss.1997.1504},


%isbn = {1595933832},
%address = {New York, NY, USA},
@inproceedings{curves,
author = {Davis, Jesse and Goadrich, Mark},
title = {The Relationship between Precision-Recall and ROC Curves},
year = {2006},
booktitle = {International Conference on Machine Learning},
pages = {233–240},

}
%
publisher = {Association for Computing Machinery},
doi = {10.1145/1143844.1143874},
location = {Pittsburgh, Pennsylvania, USA},
series = {ICML '06}

@inproceedings{cormode,
author = {Cormode, Graham},
title = {Personal Privacy vs Population Privacy: Learning to Attack Anonymization},
year = {2011},
booktitle = {International Conference on Knowledge Discovery and Data Mining},
pages = {1253–1261},
}
%doi = {10.1145/2020408.2020598},
%location = {San Diego, California, USA},
series = {KDD '11}
%publisher = {Association for Computing Machinery},

%publisher = {Association for Computing Machinery},
%address = {New York, NY, USA},
%issn = {0360-0300},
%url = {https://doi.org/10.1145/3457607},
@article{surveyfair,
author = {Mehrabi, Ninareh and Morstatter, Fred and Saxena, Nripsuta and Lerman, Kristina and Galstyan, Aram},
title = {A Survey on Bias and Fairness in Machine Learning},
year = {2021},
volume = {54},
number = {6},
journal = {Comput. Surv.},
month = {jul},
articleno = {115},
numpages = {35},
}
%
doi = {10.1145/3457607},

@article{attinfSocial1,
author = {Gong, Neil Zhenqiang and Talwalkar, Ameet and Mackey, Lester and Huang, Ling and Shin, Eui Chul Richard and Stefanov, Emil and Shi, Elaine (Runting) and Song, Dawn},
title = {Joint Link Prediction and Attribute Inference Using a Social-Attribute Network},
year = {2014},
volume = {5},
number = {2},
journal = {Trans. Intell. Syst. Technol.},
}
%
doi = {10.1145/2594455},
publisher = {Association for Computing Machinery},

%address = {New York, NY, USA},

%issn = {2471-2566},
%url = {https://doi.org/10.1145/3154793},
%numpages = {30},
%%month = {jan},
@article{attinfSocial2,
author = {Gong, Neil Zhenqiang and Liu, Bin},
title = {Attribute Inference Attacks in Online Social Networks},
year = {2018},
volume = {21},
number = {1},
journal = {Trans. Priv. Secur.},
articleno = {3},
}
%
doi = {10.1145/3154793},
publisher = {Association for Computing Machinery},

%isbn = {978-1-931971-32-4},
%address = {Austin, TX},
%url = {https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/gong},
%publisher = {USENIX Association},
%month = aug,
@inproceedings {attinfSocial3,
author = {Neil Zhenqiang Gong and Bin Liu},
title = {You Are Who You Know and How You Behave: Attribute Inference Attacks via Users{\textquoteright} Social Friends and Behaviors},
booktitle = {USENIX Security Symposium },
year = {2016},
pages = {979--995},
}


  %URL = {https://hal.inria.fr/hal-00748162},
  %ADDRESS = {San Diego, United States},
  %MONTH = Feb,
@inproceedings{attinfSocial4,
  TITLE = {{You Are What You Like! Information Leakage Through Users' Interests}},
  YEAR = {2012},
  AUTHOR = {Chaabane, Abdelberi and Acs, Gergely and Kaafar, Mohamed Ali},
  BOOKTITLE = {Network and Distributed System Security Symposium},
  PAGES = {1-14},
}




@inproceedings{attinfSocial5,
  author={Elena Zheleva and Lise Getoor},
  title={To join or not to join: the illusion of privacy in social networks with mixed public and private user profiles},
  year={2009},
  BOOKTITLE = {International Conference on World Wide Web},
  pages={531-540},
  doi={10.1145/1526709.1526781},
}



%isbn = {9781450349130},
%publisher = {International World Wide Web Conferences Steering Committee},
%address = {Republic and Canton of Geneva, CHE},
%url = {https://doi.org/10.1145/3038912.3052695},
@inproceedings{attinfSocial6,
author = {Jia, Jinyuan and Wang, Binghui and Zhang, Le and Gong, Neil Zhenqiang},
title = {AttriInfer: Inferring User Attributes in Online Social Networks Using Markov Random Fields},
year = {2017},
booktitle = {International Conference on World Wide Web},
pages = {1561–1569},
location = {Perth, Australia},
series = {WWW '17}
}
%
doi = {10.1145/3038912.3052695},
  

%isbn = {9781450382878},
%publisher = {Association for Computing Machinery},
%address = {New York, NY, USA},
@inbook{dysan,
author = {Boutet, Antoine and Frindel, Carole and Gambs, S\'{e}bastien and Jourdan, Th\'{e}o and Ngueveu, Rosin Claude},
title = {DySan: Dynamically Sanitizing Motion Sensor Data Against Sensitive Inferences through Adversarial Networks},
year = {2021},
doi = {10.1145/3433210.3453095},
booktitle = {Asia Conference on Computer and Communications Security},
pages = {672–686},
}
%serie = {ASIA CCS '21}

@inproceedings{attprivacy,
author = {Zhang, Wanrong and Ohrimenko, Olga and Cummings, Rachel},
title = {Attribute Privacy: Framework and Mechanisms},
year = {2022},
isbn = {9781450393522},
booktitle = {Fairness, Accountability, and Transparency},
pages = {757–766},
numpages = {10},

}
%url = {https://doi.org/10.1145/3531146.3533139},
doi = {10.1145/3531146.3533139},
keywords = {Pufferfish privacy, attribute privacy, formal privacy frameworks, privacy-preserving mechanisms},
series = {FAccT '22}
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},


%differential privacy and fairness
@inproceedings{dispvuln,
author    = {Mohammad Yaghini and  Bogdan Kulynych and Carmela Troncoso},
title     = {Disparate Vulnerability: on the Unfairness of Privacy Attacks Against Machine Learning},
year      = {2022},
booktitle = {Privacy Enhancing Technologies Symposium}
}


%isbn = {9781450391405},
%publisher = {Association for Computing Machinery},
%address = {New York, NY, USA},
@inproceedings{GongMIAUnfair,
author = {Zhong, Da and Sun, Haipei and Xu, Jun and Gong, Neil and Wang, Wendy Hui},
title = {Understanding Disparate Effects of Membership Inference Attacks and Their Countermeasures},
year = {2022},
booktitle = {Asia Conference on Computer and Communications Security},
pages = {959–974},
}
%location = {Nagasaki, Japan},
series = {ASIA CCS '22}
doi = {10.1145/3488932.3501279},


%sbn = {9781450311151},
%publisher = {Association for Computing Machinery},
%address = {New York, NY, USA},
%url = {https://doi.org/10.1145/2090236.2090255},
@inproceedings{indivfairness,
author = {Dwork, Cynthia and Hardt, Moritz and Pitassi, Toniann and Reingold, Omer and Zemel, Richard},
title = {Fairness through Awareness},
year = {2012},
booktitle = {Innovations in Theoretical Computer Science},
pages = {214–226},
}
%doi = {10.1145/2090236.2090255},
location = {Cambridge, Massachusetts},
series = {ITCS '12}

@inproceedings{outIndist,
author = {Dwork, Cynthia and Kim, Michael P. and Reingold, Omer and Rothblum, Guy N. and Yona, Gal},
title = {Outcome indistinguishability},
year = {2021},
booktitle = {Symposium on Theory of Computing},
pages = {1095–1108},
numpages = {14},
}
%isbn = {9781450380539},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3406325.3451064},
doi = {10.1145/3406325.3451064},
keywords = {Prediction, Fairness, Computational Indistinguishability},
location = {Virtual, Italy},
series = {STOC 2021}  



%isbn = {9781450369367},
%publisher = {Association for Computing Machinery},
%address = {New York, NY, USA},
%url = {https://doi.org/10.1145/3351095.3372872},
@inproceedings{dpfair,
author = {Pujol, David and McKenna, Ryan and Kuppam, Satya and Hay, Michael and Machanavajjhala, Ashwin and Miklau, Gerome},
title = {Fair Decision Making Using Privacy-Protected Data},
year = {2020},
booktitle = {Fairness, Accountability, and Transparency},
pages = {189–199},
}
%
doi = {10.1145/3351095.3372872},
location = {Barcelona, Spain},
series = {FAT* '20}

%url={https://ojs.aaai.org/index.php/AAAI/article/view/17193}, 
%month={May}, 
@article{fairprivatelagrangian, 
title={Differentially Private and Fair Deep Learning: A Lagrangian Dual Approach}, 
volume={35}, 
number={11}, 
journal={AAAI Conference on Artificial Intelligence}, 
author={Tran, Cuong and Fioretto, Ferdinando and Van Hentenryck, Pascal}, 
year={2021}, 
pages={9932-9939} 
}

%editor = 	 {Chaudhuri, Kamalika and Salakhutdinov, Ruslan},
  %series = 	 {Proceedings of Machine Learning Research},
  %month = 	 {09--15 Jun},
  %publisher =    {PMLR},
  %pdf = 	 {http://proceedings.mlr.press/v97/jagielski19a/jagielski19a.pdf},
  %url = 	 {https://proceedings.mlr.press/v97/jagielski19a.html}
@InProceedings{dpfairlearn,
  title = 	 {Differentially Private Fair Learning},
  author =       {Jagielski, Matthew and Kearns, Michael and Mao, Jieming and Oprea, Alina and Roth, Aaron and -Malvajerdi, Saeed Sharifi and Ullman, Jonathan},
  booktitle = 	 {International Conference on Machine Learning},
  pages = 	 {3000--3008},
  year = 	 {2019},
  volume = 	 {97},
}

@incollection{dpaccdisp,
title = {Differential Privacy Has Disparate Impact on Model Accuracy},
author = {Bagdasaryan, Eugene and Poursaeed, Omid and Shmatikov, Vitaly},
booktitle = {Advances in Neural Information Processing Systems},
pages = {15479--15488},
year = {2019}}

%isbn = {978-1-939133-06-9},
%address = {Santa Clara, CA},
%url = {https://www.usenix.org/conference/usenixsecurity19/presentation/jayaraman},
%publisher = {USENIX Association},
%month = aug,
@inproceedings {dpVacc,
author = {Bargav Jayaraman and David Evans},
title = {Evaluating Differentially Private Machine Learning in Practice},
booktitle = {USENIX Security Symposium},
year = {2019},
pages = {1895--1912},
}

%isbn = {9781450367110},
%publisher = {Association for Computing Machinery},
%address = {New York, NY, USA},
%url = {https://doi.org/10.1145/3314183.3323847},
@inproceedings{cummings,
author = {Cummings, Rachel and Gupta, Varun and Kimpara, Dhamma and Morgenstern, Jamie},
title = {On the Compatibility of Privacy and Fairness},
year = {2019},
booktitle = {Conference on User Modeling, Adaptation and Personalization},
pages = {309–315},

}
%doi = {10.1145/3314183.3323847},
series = {UMAP'19 Adjunct}
location = {Larnaca, Cyprus},

@techreport{ec2019ethics,
  address = {Brussels},
  author = {{High-Level Expert Group on AI}},
  institution = {European Commission},
  language = {eng},
  month = apr,
  title = {Ethics guidelines for trustworthy AI},
  type = {Report},
  year = {2019}
}
%
  url = {https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai},

@inproceedings{nist,
  title={A Taxonomy and Terminology of Adversarial Machine Learning},
  author={Elham Tabassi and Kevin J. Burns and M. Hadjimichael and Andres Molina-Markham and Julian Sexton},
  year={2019},
  booktitle = {NIST Interagency/Internal Report}
}
%
  url = {https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8269-draft.pdf},

@inproceedings{dpia, 
title={Art. 35 {GDPR} Data protection impact assessment},
url={https://gdpr-info.eu/art-35-gdpr/}, 
author={European Union Law},
year={2018},
booktitle={General Data Protection Regulation (GDPR)} }

@article{ico, 
title={{AI} auditing and impact assessment: according to the UK information commissioner’s office}, 
journal={AI and Ethics}, 
author={Kazim, Emre and Denny, Danielle Mendes Thame and Koshiyama, Adriano}, 
year={2021}, 
month={Feb} }
%ISSN={2730-5953, 2730-5961}, url={http://link.springer.com/10.1007/s43681-021-00039-2}, DOI={10.1007/s43681-021-00039-2}, 

@inproceedings{whitehouse, 
title={Guidance for Regulation of Artificial Intelligence Applications},
author={White House},
year = {2020},
booktitle={Memorandum For The Heads Of Executive Departments And Agencies} }
%url={https://www.whitehouse.gov/wp-content/uploads/2020/11/M-21-06.pdf}, 
%metrics

@INPROCEEDINGS{memprivNattpriv,
  author={Zhao, Benjamin Zi Hao and Agrawal, Aviral and Coburn, Catisha and Asghar, Hassan Jameel and Bhaskar, Raghav and Kaafar, Mohamed Ali and Webb, Darren and Dickinson, Peter},
  booktitle={European Security \& Privacy}, 
  title={On the (In)Feasibility of Attribute Inference Attacks on Machine Learning Models}, 
  year={2021},
  pages={232-251},
  doi={10.1109/EuroSP51992.2021.00025}
}

@article{duddu2023sok,
  title={SoK: Unintended Interactions among Machine Learning Defenses and Risks},
  author={Duddu, Vasisht and Szyller, Sebastian and Asokan, N},
  journal={arXiv preprint arXiv:2312.04542},
  year={2023}
}


@inproceedings{suri2023dissecting,
  title={Dissecting distribution inference},
  author={Suri, Anshuman and Lu, Yifu and Chen, Yanjin and Evans, David},
  booktitle={Conference on Secure and Trustworthy Machine Learning},
  pages={150--164},
  year={2023},
}
%
  organization={IEEE}


@article{de2020overview,
  title={An overview of privacy in machine learning},
  author={De Cristofaro, Emiliano},
  journal={arXiv preprint arXiv:2005.08679},
  year={2020}
}


@article{pate2021fairness,
  title={A Fairness Analysis on Private Aggregation of Teacher Ensembles},
  author={Tran, Cuong and Dinh, My H and Beiter, Kyle and Fioretto, Ferdinando},
  journal={arXiv preprint arXiv:2109.08630},
  year={2021}
}

@article{fioretto2022differential,
  title={Differential Privacy and Fairness in Decisions and Learning Tasks: A Survey},
  author={Fioretto, Ferdinando and Tran, Cuong and Van Hentenryck, Pascal and Zhu, Keyu},
  journal={arXiv preprint arXiv:2202.08187},
  year={2022}
}


% attribute inference attacks in ML
%publisher = "Institute of Electrical and Electronics Engineers (IEEE)",
%address = "United States",
@inproceedings{zhao2021infeasibility,
title = "On the (in)feasibility of attribute inference attacks on machine learning models",
author = "Zhao, {Benjamin Zi Hao} and Aviral Agrawal and Catisha Coburn and Asghar, {Hassan Jameel} and Raghav Bhaskar and Kaafar, {Mohamed Ali} and Darren Webb and Peter Dickinson",
year = "2021",
pages = "232--251",
booktitle = "European Security \& Privacy",
}
%
doi = "10.1109/EuroSP51992.2021.00025",
serie = {EuroS&P '2021},

%isbn = {978-1-939133-31-1},
%address = {Boston, MA},
%url = {https://www.usenix.org/conference/usenixsecurity22/presentation/mehnaz},
%publisher = {USENIX Association},
%month = aug,
@inproceedings{MehnazAttInf,
author = {Shagufta Mehnaz and Sayanton V. Dibbo and Ehsanul Kabir and Ninghui Li and Elisa Bertino},
title = {Are Your Sensitive Attributes Private? Novel Model Inversion Attribute Inference Attacks on Classification Models},
booktitle = {USENIX Security Symposium},
year = {2022},
pages = {4579--4596},
}

%isbn = {9781450338325},
%publisher = {Association for Computing Machinery},
%address = {New York, NY, USA},
%%url = {https://doi.org/10.1145/2810103.2813677},
@inproceedings{fredrikson1,
author = {Fredrikson, Matt and Jha, Somesh and Ristenpart, Thomas},
title = {Model Inversion Attacks That Exploit Confidence Information and Basic Countermeasures},
year = {2015},
booktitle = {Conference on Computer and Communications Security},
pages = {1322–1333},

}
%
doi = {10.1145/2810103.2813677},
location = {Denver, Colorado, USA},
series = {CCS '15}


%isbn = {9781931971157},
@inproceedings{fredrikson2,
author = {Fredrikson, Matthew and Lantz, Eric and Jha, Somesh and Lin, Simon and Page, David and Ristenpart, Thomas},
title = {Privacy in Pharmacogenetics: An End-to-End Case Study of Personalized Warfarin Dosing},
year = {2014},
booktitle = {USENIX Conference on Security Symposium},
pages = {17–32},
}
%
location = {San Diego, CA},
series = {SEC'14}

@inproceedings{Song2020Overlearning,
title={Overlearning Reveals Sensitive Attributes},
author={Congzheng Song and Vitaly Shmatikov},
booktitle={International Conference on Learning Representations},
year={2020}
}


%isbn = {9781450384544},
%publisher = {Association for Computing Machinery},
%address = {New York, NY, USA},
%url = {https://doi.org/10.1145/3460120.3484533},
@inproceedings{malekzadeh2021honestbutcurious,
author = {Malekzadeh, Mohammad and Borovykh, Anastasia and G\"{u}nd\"{u}z, Deniz},
title = {Honest-but-Curious Nets: Sensitive Attributes of Private Inputs Can Be Secretly Coded into the Classifiers' Outputs},
year = {2021},
booktitle = {Conference on Computer and Communications Security},
pages = {825–844},
}
%location = {Virtual Event, Republic of Korea},
series = {CCS '21}
doi = {10.1145/3460120.3484533},

@article{jayaraman2022attribute,
  title={Are Attribute Inference Attacks Just Imputation?},
  author={Jayaraman, Bargav and Evans, David},
  journal={arXiv preprint arXiv:2209.01292},
  year={2022}
}


@inproceedings{Mahajan2020DoesLS,
  title={Does Learning Stable Features Provide Privacy Benefits for Machine Learning Models?},
  author={Divyat Mahajan, Shruti Tople, Amit Sharma},
  booktitle = {NeurIPS PPML Workshop},
  year={2020}
}

@inproceedings{Malekzadeh_2021,
	 
	year = 2021,	month = {nov},  
	author = {Mohammad Malekzadeh and Anastasia Borovykh and Deniz Gündüz},  
	title = {Honest-but-Curious Nets: Sensitive Attributes of Private Inputs Can Be Secretly Coded into the Classifiers{\textquotesingle} Outputs},  
	booktitle = {Conference on Computer and Communications Security}}
%
	publisher = {{ACM}},  
doi = {10.1145/3460120.3484533},  
	url = {https://doi.org/10.1145%2F3460120.3484533}, 


@INPROCEEDINGS{meminf,
  author={Shokri, Reza and Stronati, Marco and Song, Congzheng and Shmatikov, Vitaly},
  booktitle={Security \& Privacy}, 
  title={Membership Inference Attacks Against Machine Learning Models}, 
  year={2017},
  pages={3-18},}
%
  doi={10.1109/SP.2017.41}
  
@article{chang2021privacy,
  title={On the Privacy Risks of Algorithmic Fairness},
  author={Hongyang Chang and R. Shokri},
  journal={European Security \& Privacy},
  year={2021},
  pages={292-303}
}

@article{duddu2022inferring,
  title={Inferring Sensitive Attributes from Model Explanations},
  author={Duddu, Vasisht and Boutet, Antoine},
  journal={arXiv preprint arXiv:2208.09967},
  year={2022}
}

%editor = {H. Larochelle and M. Ranzato and R. Hadsell and M. F. Balcan and H. Lin},
 %publisher = {Curran Associates, Inc.},
 %url = {https://proceedings.neurips.cc/paper/2020/file/6b8b8e3bd6ad94b985c1b1f1b7a94cb2-Paper.pdf},
@inproceedings{NEURIPS2020_6b8b8e3b,
 author = {Zhao, Han and Chi, Jianfeng and Tian, Yuan and Gordon, Geoffrey J},
 booktitle = {Advances in Neural Information Processing Systems},
 pages = {9485--9496},
 title = {Trade-offs and Guarantees of Adversarial Representation Learning for Information Obfuscation},
 volume = {33},
 year = {2020}
}



@ARTICLE{8515092,
author={S. A. {Osia} and A. {Taheri} and A. S. {Shamsabadi} and K. {Katevas} and H. {Haddadi} and H. R. {Rabiee}},
journal={Transactions on Knowledge and Data Engineering},
title={Deep Private-Feature Extraction},
year={2020},
volume={32},
number={1},
pages={54-66},
}



%eprint    = {1707.00075}
@article{advfair,
  author    = {Alex Beutel and Jilin Chen and Zhe Zhao and Ed H. Chi},
  title     = {Data Decisions and Theoretical Implications when Adversarially Learning Fair Representations},
  year      = {2017},
  publisher = {arXiv},
  doi = {10.48550/ARXIV.1707.00075},
}

%property inference attack

@article{propinf,
  title={Dataset-Level Attribute Leakage in Collaborative Learning},
  author={Zhang, Wanrong and Tople, Shruti and Ohrimenko, Olga},
  journal={arXiv:2006.07267},
  year={2020}
}

%month = sep,
@article{propinf2,
author = {Ateniese, Giuseppe and Mancini, Luigi V. and Spognardi, Angelo and Villani, Antonio and Vitali, Domenico and Felici, Giovanni},
title = {Hacking Smart Machines with Smarter Ones: How to Extract Meaningful Data from Machine Learning Classifiers},
year = {2015},
volume = {10},
number = {3},
journal = {Int. J. Secur. Netw.},
pages = {137–150}
}


%isbn = {9781450356930},
%publisher = {Association for Computing Machinery},
%address = {New York, NY, USA},
%url = {https://doi.org/10.1145/3243734.3243834},
@inproceedings{propinf3,
author = {Ganju, Karan and Wang, Qi and Yang, Wei and Gunter, Carl A. and Borisov, Nikita},
title = {Property Inference Attacks on Fully Connected Neural Networks Using Permutation Invariant Representations},
year = {2018},
booktitle = {Conference on Computer and Communications Security},
pages = {619–633},

}
%location = {Toronto, Canada},
series = {CCS '18}
doi = {10.1145/3243734.3243834},


@article{propinf4,
  title={Formalizing and Estimating Distribution Inference Risks},
  author={Suri, Anshuman and Evans, David},
  journal={Privacy Enhancing Technologies},
  year={2022}
}

@inproceedings{fedinference,
author={L. {Melis} and C. {Song} and E. {De Cristofaro} and V. {Shmatikov}},
booktitle={Security \& Privacy},
title={Exploiting Unintended Feature Leakage in Collaborative Learning},
year={2019},
pages={691-706}
}

@INPROCEEDINGS {ferryExploit,
author = {J. Ferry and U. Aivodji and S. Gambs and M. Huguet and M. Siala},
booktitle = {Conference on Secure and Trustworthy Machine Learning},
title = {Exploiting Fairness to Enhance Sensitive Attributes Reconstruction},
year = {2023},
volume = {},
issn = {},
pages = {18-41},
month = {feb}
}
%keywords = {training;measurement;learning systems;privacy;pipelines;training data;machine learning},
doi = {10.1109/SaTML54575.2023.00012},
url = {https://doi.ieeecomputersociety.org/10.1109/SaTML54575.2023.00012},
publisher = {IEEE Computer Society},
address = {Los Alamitos, CA, USA},



% defences against attribute inference attacks

@inproceedings{10.5555/3042817.3042973,
author = {Zemel, Richard and Wu, Yu and Swersky, Kevin and Pitassi, Toniann and Dwork, Cynthia},
title = {Learning Fair Representations},
year = {2013},
booktitle = {International Conference on Machine Learning},
}
%serie = {ICML '13},

%month = jan,
@article{10.5555/3122009.3208010,
author = {Hamm, Jihun},
title = {Minimax Filter: Learning to Preserve Privacy from Inference Attacks},
year = {2017},
volume = {18},
number = {1},
journal = {J. Mach. Learn. Res.},
pages = {4704–4734}
}

@inproceedings{10.5555/3327546.3327583,
author = {Moyer, Daniel and Gao, Shuyang and Brekelmans, Rob and Steeg, Greg Ver and Galstyan, Aram},
title = {Invariant Representations without Adversarial Training},
year = {2018},
booktitle = {Advances in Neural Information Processing Systems}
}

@inproceedings{10.5555/3294771.3294827,
author = {Xie, Qizhe and Dai, Zihang and Du, Yulun and Hovy, Eduard and Neubig, Graham},
title = {Controllable Invariance through Adversarial Feature Learning},
year = {2017},
booktitle = {Advances in Neural Information Processing Systems}
}

@InProceedings{pmlr-v80-madras18a,
  title = 	 {Learning Adversarially Fair and Transferable Representations},
  author =       {Madras, David and Creager, Elliot and Pitassi, Toniann and Zemel, Richard},
  pages = 	 {3384--3393},
  year = 	 {2018},
  volume = 	 {80},
  booktitle = 	 {Proceedings of Machine Learning Research},
}

@inproceedings{censoringadv,
title     = "Censoring Representations with an Adversary",
author    = "Harrison Edwards and Amos Storkey",
year      = "2016",
booktitle = {International Conference on Learning Representations}
}
@inproceedings{NIPS2017_48ab2f9b,
 author = {Louppe, Gilles and Kagan, Michael and Cranmer, Kyle},
 booktitle = {Advances in Neural Information Processing Systems},
 editor = {I. Guyon and U. Von Luxburg and S. Bengio and H. Wallach and R. Fergus and S. Vishwanathan and R. Garnett},
 pages = {},
 publisher = {Curran Associates, Inc.},
 title = {Learning to Pivot with Adversarial Networks},
  volume = {30},
 year = {2017}
}
%url = {https://proceedings.neurips.cc/paper_files/paper/2017/file/48ab2f9b45957ab574cf005eb8a76760-Paper.pdf},

%isbn = {9781450360128},
%publisher = {Association for Computing Machinery},
%address = {New York, NY, USA},
%url = {https://doi.org/10.1145/3278721.3278779},
@inproceedings{debiase,
author = {Zhang, Brian Hu and Lemoine, Blake and Mitchell, Margaret},
title = {Mitigating Unwanted Biases with Adversarial Learning},
year = {2018},
booktitle = {Conference on AI, Ethics, and Society},
pages = {335–340},
}
% location = {New Orleans, LA, USA},
series = {AIES '18}
doi = {10.1145/3278721.3278779},

  %month = {10},
%pages = {},
@article{preprocessing,
author = {Kamiran, Faisal and Calders, Toon},
year = {2011},
title = {Data Pre-Processing Techniques for Classification without Discrimination},
volume = {33},
journal = {Knowledge and Information Systems},
}
%doi = {10.1007/s10115-011-0463-8}

%series = 	 {Proceedings of Machine Learning Research},
  %month = 	 {10--15 Jul},
  %publisher =    {PMLR},
  %pdf = 	 {http://proceedings.mlr.press/v80/agarwal18a/agarwal18a.pdf},
  %url = 	 {https://proceedings.mlr.press/v80/agarwal18a.html},
@InProceedings{reductions,
  title = 	 {A Reductions Approach to Fair Classification},
  author =       {Agarwal, Alekh and Beygelzimer, Alina and Dudik, Miroslav and Langford, John and Wallach, Hanna},
  booktitle = 	 {International Conference on Machine Learning},
  pages = 	 {60--69},
  year = 	 {2018},
  volume = 	 {80},
}

@article{kifer2014pufferfish,
author = {Kifer, Daniel and Machanavajjhala, Ashwin},
title = {Pufferfish: A framework for mathematical privacy definitions},
year = {2014},
issue_date = {January 2014},
volume = {39},
number = {1},
issn = {0362-5915},
journal = {Trans. Database Syst.},
month = {jan},
articleno = {3},
numpages = {36},
keywords = {Privacy, differential privacy}
}
%url = {https://doi.org/10.1145/2514689},
doi = {10.1145/2514689},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},

@inproceedings{song2017pufferfish,
  title={Pufferfish privacy mechanisms for correlated data},
  author={Song, Shuang and Wang, Yizhen and Chaudhuri, Kamalika},
  booktitle={International Conference on Management of Data},
  pages={1291--1306},
  year={2017}
}

@article{grinsztajn2022tree,
  title={Why do tree-based models still outperform deep learning on typical tabular data?},
  author={Grinsztajn, L{\'e}o and Oyallon, Edouard and Varoquaux, Ga{\"e}l},
  journal={Advances in neural information processing systems},
  volume={35},
  pages={507--520},
  year={2022}
}



@inproceedings {attriguard,
author = {Jinyuan Jia and Neil Zhenqiang Gong},
title = {AttriGuard: A Practical Defense Against Attribute Inference Attacks via Adversarial Machine Learning},
booktitle = {USENIX Security},
year = {2018},
pages = {513--529},
}


% fairness metrics

@article{fairmetric,
author  = {Muhammad Bilal Zafar and Isabel Valera and Manuel Gomez-Rodriguez and Krishna P. Gummadi},
title   = {Fairness Constraints: A Flexible Approach for Fair Classification},
journal = {Journal of Machine Learning Research},
year    = {2019},
volume  = {20},
number  = {75},
pages   = {1-42}
}

@inproceedings{fairmetric2,
author = {Hardt, Moritz and Price, Eric and Srebro, Nathan},
title = {Equality of Opportunity in Supervised Learning},
year = {2016},
booktitle = {Advances in Neural Information Processing Systems},
pages = {3323–3331}
}

@article{fairjustice,
author = {Alikhademi, Kiana and Drobina, Emma and Prioleau, Diandra and Richardson, Brianna and Purves, Duncan and Gilbert, Juan E.},
title = {A Review of Predictive Policing from the Perspective of Fairness},
year = {2022},
issue_date = {Mar 2022},
publisher = {Kluwer Academic Publishers},
address = {USA},
volume = {30},
number = {1},
issn = {0924-8463},
journal = {Artif. Intell. Law},
month = {mar},
pages = {1–17},
numpages = {17},
keywords = {Predictive policing, Algorithmic fairness, Fairness, AI in criminal justice}
}
%url = {https://doi.org/10.1007/s10506-021-09286-4},
doi = {10.1007/s10506-021-09286-4},
  
@article{folk,
  title={Retiring Adult: New Datasets for Fair Machine Learning},
  author={Ding, Frances and Hardt, Moritz and Miller, John and Schmidt, Ludwig},
  journal={Advances in Neural Information Processing Systems},
  volume={34},
  year={2021}
}

@inproceedings{
    SDV,
    title={The Synthetic data vault},
    author={Patki, Neha and Wedge, Roy and Veeramachaneni, Kalyan},
    booktitle={International Conference on Data Science and Advanced Analytics},
    year={2016},
    pages={399-410},
    month={Oct}
}
%
    doi={10.1109/DSAA.2016.49},

@misc{dpbad,
  author = {Dwork, Cynthia and Hardt, Moritz and Pitassi, Toniann and Reingold, Omer and Zemel, Rich},
  title = {Fairness Through Awareness},
        eprint={1104.3913},
      archivePrefix={arXiv},
  year = {2011},
      primaryClass={cs.CY}
}
%keywords = {Computational Complexity (cs.CC), Computers and Society (cs.CY), FOS: Computer and information sciences, FOS: Computer and information sciences},
%doi = {10.48550/ARXIV.1104.3913},  
  url = {https://arxiv.org/abs/1104.3913},
copyright = {arXiv.org perpetual, non-exclusive license}

@INPROCEEDINGS{fairlog,

  author={Radovanović, Sandro and Petrović, Andrija and Delibašić, Boris and Suknović, Milija},

  booktitle={International Conference on INnovations in Intelligent SysTems and Applications}, 

  title={Enforcing fairness in logistic regression algorithm}, 

  year={2020},

  volume={},

  number={},

  pages={1-7},
}
%doi={10.1109/INISTA49547.2020.9194676}


@misc{fairreg,
      title={Fair Regression: Quantitative Definitions and Reduction-based Algorithms}, 
      author={Alekh Agarwal and Miroslav Dudík and Zhiwei Steven Wu},
      year={2019},
      eprint={1905.12843},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}



@InProceedings{fairaudit1,
  title = 	 {Blind Justice: Fairness with Encrypted Sensitive Attributes},
  author =       {Kilbertus, Niki and Gascon, Adria and Kusner, Matt and Veale, Michael and Gummadi, Krishna and Weller, Adrian},
  booktitle = 	 {International Conference on Machine Learning},
  pages = 	 {2630--2639},
  year = 	 {2018},
  editor = 	 {Dy, Jennifer and Krause, Andreas},
  volume = 	 {80},
  
  month = 	 {10--15 Jul},
  publisher =    {PMLR},
  
}
%series = 	 {Proceedings of Machine Learning Research},
pdf = 	 {http://proceedings.mlr.press/v80/kilbertus18a/kilbertus18a.pdf},
  url = 	 {https://proceedings.mlr.press/v80/kilbertus18a.html},



@inproceedings{fairaudit2,
author = {Park, Saerom and Kim, Seongmin and Lim, Yeon-sup},
title = {Fairness Audit of Machine Learning Models with Confidential Computing},
year = {2022},
isbn = {9781450390965},
booktitle = {Web Conference 2022},
pages = {3488–3499},
numpages = {12},
keywords = {Confidential computing, Algorithmic audit, Security and privacy, Fairness},
}
%publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3485447.3512244},
doi = {10.1145/3485447.3512244},
location = {Virtual Event, Lyon, France},
series = {WWW '22}

@inproceedings{fairaudit3,
author = {Segal, Shahar and Adi, Yossi and Pinkas, Benny and Baum, Carsten and Ganesh, Chaya and Keshet, Joseph},
title = {Fairness in the Eyes of the Data: Certifying Machine-Learning Models},
year = {2021},
booktitle = {Conference on AI, Ethics, and Society},
pages = {926–935},
numpages = {10},
keywords = {machine-learning, cryptography, privacy, fairness},
}  
%publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3461702.3462554},
doi = {10.1145/3461702.3462554},
location = {Virtual Event, USA},
series = {AIES '21}
isbn = {9781450384735},

@article{yadav2024fairproof,
  title={FairProof: Confidential and Certifiable Fairness for Neural Networks},
  author={Yadav, Chhavi and Chowdhury, Amrita Roy and Boneh, Dan and Chaudhuri, Kamalika},
  journal={arXiv preprint arXiv:2402.12572},
  year={2024}
}

@inproceedings{khedr2023certifair,
  title={Certifair: A framework for certified global fairness of neural networks},
  author={Khedr, Haitham and Shoukry, Yasser},
  booktitle={AAAI Conference on Artificial Intelligence},
  volume={37},
  number={7},
  pages={8237--8245},
  year={2023}
}

@article{urban20,
author = {Urban, Caterina and Christakis, Maria and W\"{u}stholz, Valentin and Zhang, Fuyuan},
title = {Perfectly parallel fairness certification of neural networks},
year = {2020},
issue_date = {November 2020},
volume = {4},
number = {OOPSLA},
journal = {Program. Lang.},
month = {nov},
articleno = {185},
numpages = {30},
keywords = {Static Analysis, Neural Networks, Fairness, Abstract Interpretation}
}
%publisher = {Association for Computing Machinery},
address = {New York, NY, USA},

@inproceedings{
chugg2023auditing,
title={Auditing Fairness by Betting},
author={Ben Chugg and Santiago Cortes-Gomez and Bryan Wilder and Aaditya Ramdas},
booktitle={Conference on Neural Information Processing Systems},
year={2023},
}
%
url={https://openreview.net/forum?id=EEVpt3dJQj}

@inproceedings{yan2022active,
  title={Active fairness auditing},
  author={Yan, Tom and Zhang, Chicheng},
  booktitle={International Conference on Machine Learning},
  pages={24929--24962},
  year={2022},
  organization={PMLR}
}

@article{de2024fairness,
  title={Fairness Auditing with Multi-Agent Collaboration},
  author={de Vos, Martijn and Dhasade, Akash and Bourr{\'e}e, Jade Garcia and Kermarrec, Anne-Marie and Merrer, Erwan Le and Rottembourg, Benoit and Tredan, Gilles},
  journal={arXiv preprint arXiv:2402.08522},
  year={2024}
}

@inproceedings{ghosh2022algorithmic,
  title={Algorithmic fairness verification with graphical models},
  author={Ghosh, Bishwamittra and Basu, Debabrota and Meel, Kuldeep S},
  booktitle={AAAI Conference on Artificial Intelligence},
  volume={36},
  number={9},
  pages={9539--9548},
  year={2022}
}

@inproceedings{ghosh2023biased,
  title={“How Biased are Your Features?”: Computing Fairness Influence Functions with Global Sensitivity Analysis},
  author={Ghosh, Bishwamittra and Basu, Debabrota and Meel, Kuldeep S},
  booktitle={Fairness, Accountability, and Transparency},
  pages={138--148},
  year={2023}
}

@article{FairSquare,
author = {Albarghouthi, Aws and D'Antoni, Loris and Drews, Samuel and Nori, Aditya V.},
title = {FairSquare: probabilistic verification of program fairness},
year = {2017},
issue_date = {October 2017},
volume = {1},
number = {OOPSLA},
journal = {Program. Lang.},
month = {oct},
articleno = {80},
numpages = {30},
keywords = {Algorithmic Fairness, Probabilistic Inference, Probabilistic Programming}
}
%publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3133904},
doi = {10.1145/3133904},

@article{saleiro2018aequitas,
  title={Aequitas: A bias and fairness audit toolkit},
  author={Saleiro, Pedro and Kuester, Benedict and Hinkson, Loren and London, Jesse and Stevens, Abby and Anisfeld, Ari and Rodolfa, Kit T and Ghani, Rayid},
  journal={arXiv preprint arXiv:1811.05577},
  year={2018}
}

@article{bastani2019probabilistic,
  title={Probabilistic verification of fairness properties via concentration},
  author={Bastani, Osbert and Zhang, Xin and Solar-Lezama, Armando},
  journal={Programming Languages},
  volume={3},
  number={OOPSLA},
  pages={1--27},
  year={2019},
}
%
  publisher={ACM New York, NY, USA}

@article{adler2018auditing,
  title={Auditing black-box models for indirect influence},
  author={Adler, Philip and Falk, Casey and Friedler, Sorelle A and Nix, Tionney and Rybeck, Gabriel and Scheidegger, Carlos and Smith, Brandon and Venkatasubramanian, Suresh},
  journal={Knowledge and Information Systems},
  volume={54},
  pages={95--122},
  year={2018},
}
%  publisher={Springer}

@inproceedings{black2020fliptest,
  title={Fliptest: fairness testing via optimal transport},
  author={Black, Emily and Yeom, Samuel and Fredrikson, Matt},
  booktitle={Fairness, Accountability, and Transparency},
  pages={111--121},
  year={2020}
}

@article{Justicia, 
title={Justicia: A Stochastic SAT Approach to Formally Verify Fairness}, 
volume={35}, 
number={9}, journal={Conference on Artificial Intelligence}, author={Ghosh, Bishwamittra and Basu, Debabrota and Meel, Kuldeep S.}, year={2021}, month={May}, pages={7554-7563} }
%url={https://ojs.aaai.org/index.php/AAAI/article/view/16925}, DOI={10.1609/aaai.v35i9.16925}, 
}

####################AIA
@article{ofverstedt2022fast,
  title={Fast computation of mutual information in the frequency domain with applications to global multimodal image alignment},
  author={{\"O}fverstedt, Johan and Lindblad, Joakim and Sladoje, Nata{\v{s}}a},
  journal={Pattern Recognition Letters},
  volume={159},
  pages={196--203},
  year={2022},
  publisher={Elsevier}
}


@article{dai2022comprehensive,
  title={A comprehensive survey on trustworthy graph neural networks: Privacy, robustness, fairness, and explainability},
  author={Dai, Enyan and Zhao, Tianxiang and Zhu, Huaisheng and Xu, Junjie and Guo, Zhimeng and Liu, Hui and Tang, Jiliang and Wang, Suhang},
  journal={arXiv preprint arXiv:2204.08570},
  year={2022}
}

@article{franco2021toward,
  title={Toward learning trustworthily from data combining privacy, fairness, and explainability: an application to face recognition},
  author={Franco, Danilo and Oneto, Luca and Navarin, Nicol{\`o} and Anguita, Davide},
  journal={Entropy},
  volume={23},
  number={8},
  pages={1047},
  year={2021},
  publisher={MDPI}
}

@article{grant2020show,
  title={Show us the data: Privacy, explainability, and why the law can't have both},
  author={Grant, Thomas D and Wischik, Damon J},
  journal={Geo. Wash. L. Rev.},
  volume={88},
  pages={1350},
  year={2020},
  publisher={HeinOnline}
}

@article{pielke2005hurricanes,
  title={Hurricanes and global warming},
  author={Pielke Jr, Roger A and Landsea, Chris and Mayfield, Max and Layer, J and Pasch, Richard},
  journal={Bulletin of the American Meteorological Society},
  volume={86},
  number={11},
  pages={1571--1576},
  year={2005},
  publisher={American Meteorological Society}
}
@article{khasnis2005global,
  title={Global warming and infectious disease},
  author={Khasnis, Atul A and Nettleman, Mary D},
  journal={Archives of medical research},
  volume={36},
  number={6},
  pages={689--696},
  year={2005},
  publisher={Elsevier}
}
@article{houghton2005global,
  title={Global warming},
  author={Houghton, John},
  journal={Reports on progress in physics},
  volume={68},
  number={6},
  pages={1343},
  year={2005},
  publisher={IOP Publishing}
}

@misc{mcnutt2013climate,
  title={Climate change impacts},
  author={McNutt, Marcia},
  journal={Science},
  volume={341},
  number={6145},
  pages={435--435},
  year={2013},
  publisher={American Association for the Advancement of Science}
}

@article{melillo2014climate,
  title={Climate change impacts in the United States},
  author={Melillo, Jerry M and Richmond, TT and Yohe, Gary and others},
  journal={Third national climate assessment},
  volume={52},
  pages={150--174},
  year={2014},
  publisher={US Global Change Research Program, Washington, DC}
}


@misc{carbonfr,
    title={L’empreinte carbone de la France de 1995 à 2022},
    howpublished={\url{https://www.statistiques.developpement-durable.gouv.fr/lempreinte-carbone-de-la-france-de-1995-2022}},
    note={Dernier accès: 2024-09-18}
}

@article{shadrin2019designing,
  title={Designing future precision agriculture: Detection of seeds germination using artificial intelligence on a low-power embedded system},
  author={Shadrin, Dmitrii and Menshchikov, Alexander and Ermilov, Dmitry and Somov, Andrey},
  journal={IEEE Sensors Journal},
  volume={19},
  number={23},
  pages={11573--11582},
  year={2019},
  publisher={IEEE}
}
@article{schwartz2020green,
  title={Green ai},
  author={Schwartz, Roy and Dodge, Jesse and Smith, Noah A and Etzioni, Oren},
  journal={Communications of the ACM},
  volume={63},
  number={12},
  pages={54--63},
  year={2020},
  publisher={ACM New York, NY, USA}
}


@article{verdecchia2023systematic,
  title={A systematic review of Green AI},
  author={Verdecchia, Roberto and Sallou, June and Cruz, Lu{\'\i}s},
  journal={Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery},
  volume={13},
  number={4},
  pages={e1507},
  year={2023},
  publisher={Wiley Online Library}
}



@misc{google_vision,
  title = {Google vision },
  howpublished = {https://cloud.google.com/vision},
  note = {Accessed: 2021-05-27}
}
@article{ylc,
    title="Gradient-Based Learning Applied to Document Recognition",
    author="Y. LeCun, L. Bottou, Y. Bengio and P. Haffner",
    journal="Proceedings of the IEEE",
    volume="86",
    number="11",
    pages="2278-2324",
    year="1998"
}
@misc{RGPD,
    title="Le règlement général sur la protection des données",
    howpublished="https://www.cnil.fr/fr/reglement-europeen-protection-donnees"
}
@misc{78-17,
    title="Loi n° 78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés",
    howpublished="https://www.legifrance.gouv.fr/loda/id/LEGITEXT000006068624/2019-06-04/"
}
@misc{art,
    title="Adversarial robustness toolbox",
    howpublished="https://adversarial-robustness-toolbox.org/"
}
@misc{hardt2016equality,
    title={Equality of Opportunity in Supervised Learning},
    author={Moritz Hardt and Eric Price and Nathan Srebro},
    year={2016},
    eprint={1610.02413},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
@misc{chang2021privacy,
      title={On the Privacy Risks of Algorithmic Fairness}, 
      author={Hongyan Chang and Reza Shokri},
      year={2021},
      eprint={2011.03731},
      archivePrefix={arXiv},
      primaryClass={stat.ML}
}
@misc{agarwal2018reductions,
      title={A Reductions Approach to Fair Classification}, 
      author={Alekh Agarwal and Alina Beygelzimer and Miroslav Dudík and John Langford and Hanna Wallach},
      year={2018},
      eprint={1803.02453},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
@misc{yeom,
      title={Privacy Risk in Machine Learning: Analyzing the Connection to Overfitting}, 
      author={Samuel Yeom and Irene Giacomelli and Matt Fredrikson and Somesh Jha},
      year={2018},
      eprint={1709.01604},
      archivePrefix={arXiv},
      primaryClass={cs.CR}
}
@article{saddlepointsolve,
title = {A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting},
journal = {Journal of Computer and System Sciences},
volume = {55},
number = {1},
pages = {119-139},
year = {1997},
issn = {0022-0000},
doi = {https://doi.org/10.1006/jcss.1997.1504},
url = {https://www.sciencedirect.com/science/article/pii/S002200009791504X},
author = {Yoav Freund and Robert E Schapire},
abstract = {In the first part of the paper we consider the problem of dynamically apportioning resources among a set of options in a worst-case on-line framework. The model we study can be interpreted as a broad, abstract extension of the well-studied on-line prediction model to a general decision-theoretic setting. We show that the multiplicative weight-update Littlestone–Warmuth rule can be adapted to this model, yielding bounds that are slightly weaker in some cases, but applicable to a considerably more general class of learning problems. We show how the resulting learning algorithm can be applied to a variety of problems, including gambling, multiple-outcome prediction, repeated games, and prediction of points in Rn. In the second part of the paper we apply the multiplicative weight-update technique to derive a new boosting algorithm. This boosting algorithm does not require any prior knowledge about the performance of the weak learning algorithm. We also study generalizations of the new boosting algorithm to the problem of learning functions whose range, rather than being binary, is an arbitrary finite set or a bounded segment of the real line.}
}
@misc{surveyfair,
    title={A Survey on Bias and Fairness in Machine Learning},
    author={Ninareh Mehrabi and Fred Morstatter and Nripsuta Saxena and Kristina Lerman and Aram Galstyan},
    year={2019},
    eprint = {1908.09635}
}

@inproceedings{10.1145/2020408.2020598,
author = {Cormode, Graham},
title = {Personal Privacy vs Population Privacy: Learning to Attack Anonymization},
year = {2011},
booktitle = {KDD},
pages = {1253–1261},
}

@inproceedings{abadi2016deep,
  title={Deep learning with differential privacy},
  author={Abadi, Martin and Chu, Andy and Goodfellow, Ian and McMahan, H Brendan and Mironov, Ilya and Talwar, Kunal and Zhang, Li},
  booktitle={Proceedings of the 2016 ACM SIGSAC conference on computer and communications security},
  pages={308--318},
  year={2016}
}


@inproceedings{10.1145/3433210.3453095,
author = {Boutet, Antoine and Frindel, Carole and Gambs, S\'{e}bastien and Jourdan, Th\'{e}o and Ngueveu, Rosin Claude},
title = {DySan: Dynamically Sanitizing Motion Sensor Data Against Sensitive Inferences through Adversarial Networks},
year = {2021},
booktitle = {Asia CCS},
pages = {672–686},
}

@inproceedings {272298,
author = {Nishat Koti and Mahak Pancholi and Arpita Patra and Ajith Suresh},
title = {{SWIFT}: Super-fast and Robust Privacy-Preserving Machine Learning},
booktitle = {{USENIX} Security},
year = {2021},
publisher = {{USENIX} Association},
}

@misc{hunt2018chiron,
      title={Chiron: Privacy-preserving Machine Learning as a Service}, 
      author={Tyler Hunt and Congzheng Song and Reza Shokri and Vitaly Shmatikov and Emmett Witchel},
      year={2018},
      eprint={1803.05961},
      archivePrefix={arXiv},
      primaryClass={cs.CR}
}


@misc{malekzadeh2021honestbutcurious,
      title={Honest-but-Curious Nets: Sensitive Attributes of Private Inputs can be Secretly Coded into the Entropy of Classifiers' Outputs}, 
      author={Mohammad Malekzadeh and Anastasia Borovykh and Deniz Gündüz},
      year={2021},
      eprint={2105.12049},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

@InProceedings{pmlr-v130-vogel21a,
  title = 	 { Learning Fair Scoring Functions: Bipartite Ranking under ROC-based Fairness Constraints },
  author =       {Vogel, Robin and Bellet, Aur{\'e}lien and Cl{\'e}men{\c{c}}on, Stephan},
  booktitle = 	 {Proceedings of The 24th International Conference on Artificial Intelligence and Statistics},
  pages = 	 {784--792},
  year = 	 {2021},
  editor = 	 {Banerjee, Arindam and Fukumizu, Kenji},
  volume = 	 {130},
  series = 	 {Proceedings of Machine Learning Research},
  month = 	 {13--15 Apr},
}

@misc{chang2021privacy,
      title={On the Privacy Risks of Algorithmic Fairness}, 
      author={Hongyan Chang and Reza Shokri},
      year={2021},
      eprint={2011.03731},
      archivePrefix={arXiv},
      primaryClass={stat.ML}
}

@misc{fedsurvey,
    title={Advances and Open Problems in Federated Learning},
    author={Peter Kairouz et al.},
    year={2019},
    eprint = {1912.04977}
}

@techreport{ec2019ethics,
  author = {High-Level Expert Group on AI},
  year={2019},
  title = {Ethics guidelines for trustworthy AI}
}

@article{stealingtime,
  author    = {Vasisht Duddu and
               Debasis Samanta and
               D. Vijay Rao and
               Valentina E. Balas},
  title     = {Stealing Neural Networks via Timing Side Channels},
  year      = {2018},
  eprint    = {1812.11720}
}

@misc{duddu2019quantifying,
    title={Quantifying (Hyper) Parameter Leakage in Machine Learning},
    author={Vasisht Duddu and D. Vijay Rao},
    year={2019},
    eprint={1910.14409}
}

@inproceedings{stealml,
author = {Tram\`{e}r, Florian and Zhang, Fan and Juels, Ari and Reiter, Michael K. and Ristenpart, Thomas},
title = {Stealing Machine Learning Models via Prediction APIs},
year = {2016},
booktitle = {USENIX Security},
pages = {601–618},
}


@misc{duddu2021gecko,
      title={GECKO: Reconciling Privacy, Accuracy and Efficiency in Embedded Deep Learning}, 
      author={Vasisht Duddu and Antoine Boutet and Virat Shejwalkar},
      year={2021},
      eprint={2010.00912},
      archivePrefix={arXiv},
      primaryClass={cs.CR}
}

@misc{duddu2021quantifying,
      title={Quantifying Privacy Leakage in Graph Embedding}, 
      author={Vasisht Duddu and Antoine Boutet and Virat Shejwalkar},
      year={2021},
      eprint={2010.00906},
      archivePrefix={arXiv},
      primaryClass={cs.CR}
}

@inproceedings{NEURIPS2020_6b8b8e3b,
 author = {Zhao, Han and Chi, Jianfeng and Tian, Yuan and Gordon, Geoffrey J},
 booktitle = {Advances in Neural Information Processing Systems},
 editor = {H. Larochelle and M. Ranzato and R. Hadsell and M. F. Balcan and H. Lin},
 pages = {9485--9496},
 publisher = {Curran Associates, Inc.},
 title = {Trade-offs and Guarantees of Adversarial Representation Learning for Information Obfuscation},
 url = {https://proceedings.neurips.cc/paper/2020/file/6b8b8e3bd6ad94b985c1b1f1b7a94cb2-Paper.pdf},
 volume = {33},
 year = {2020}
}

@inproceedings{10.1145/3319535.3363201,
author = {Jia, Jinyuan and Salem, Ahmed and Backes, Michael and Zhang, Yang and Gong, Neil Zhenqiang},
title = {MemGuard: Defending against Black-Box Membership Inference Attacks via Adversarial Examples},
year = {2019},
booktitle = {CCS},
pages = {259–274}
}


@INPROCEEDINGS{meminf,
author={R. {Shokri} and M. {Stronati} and C. {Song} and V. {Shmatikov}},
booktitle={SP},
year = {2017},
title={Membership Inference Attacks Against Machine Learning Models}
}

@inproceedings{fedinversion,
author = {Hitaj, Briland and Ateniese, Giuseppe and Perez-Cruz, Fernando},
title = {Deep Models Under the GAN: Information Leakage from Collaborative Deep Learning},
year = {2017},
booktitle = {CCS},
pages = {603–618}
}





@INPROCEEDINGS{fedpriv2,
author={M. {Nasr} and R. {Shokri} and A. {Houmansadr}},
booktitle={SP},
year = {2019},
title={Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-box Inference Attacks against Centralized and Federated Learning},
pages={739-753}}


@inproceedings{fairprivatedata,
author = {Pujol, David and McKenna, Ryan and Kuppam, Satya and Hay, Michael and Machanavajjhala, Ashwin and Miklau, Gerome},
title = {Fair Decision Making Using Privacy-Protected Data},
year = {2020},
booktitle = {FAT*},
pages = {189–199},
}

@inproceedings{compatibility,
author = {Cummings, Rachel and Gupta, Varun and Kimpara, Dhamma and Morgenstern, Jamie},
title = {On the Compatibility of Privacy and Fairness},
year = {2019},
booktitle = {UMAP},
pages = {309–315}
}

@inproceedings{Song2020Overlearning,
title={Overlearning Reveals Sensitive Attributes},
author={Congzheng Song and Vitaly Shmatikov},
booktitle={International Conference on Learning Representations},
year={2020}
}

@ARTICLE{8515092,
author={S. A. {Osia} and A. {Taheri} and A. S. {Shamsabadi} and K. {Katevas} and H. {Haddadi} and H. R. {Rabiee}},
journal={IEEE Transactions on Knowledge and Data Engineering},
title={Deep Private-Feature Extraction},
year={2020},
volume={32},
number={1},
pages={54-66},}


@misc{removedispimpactdpsgd,
title={Removing Disparate Impact of Differentially Private Stochastic Gradient Descent on Model Accuracy},
author={Depeng Xu and Wei Du and Xintao Wu},
year={2020},
eprint = {2003.03699},
}

@article{incompatibility,
title={Fair Inputs and Fair Outputs: The Incompatibility of Fairness in Privacy and Accuracy},
author={Rastegarpanah, Bashir and Crovella, Mark and Gummadi, Krishna P},
eprint = {2005.09209},
year={2020}
}

@article{fairvrobust,
author    = {Hongyan Chang and Ta Duy Nguyen and Sasi Kumar Murakonda and Ehsan Kazemi and Reza Shokri},
title     = {On Adversarial Bias and the Robustness of Fair Machine Learning},
year      = {2020},
eprint = {2006.08669}
}

@article{dispvuln,
author    = {Mohammad Yaghini and  Bogdan Kulynych and Carmela Troncoso},
title     = {Disparate Vulnerability: on the Unfairness of Privacy Attacks Against Machine Learning},
year      = {2019},
eprint = {1906.00389}
}

@incollection{dpaccdisp,
title = {Differential Privacy Has Disparate Impact on Model Accuracy},
author = {Bagdasaryan, Eugene and Poursaeed, Omid and Shmatikov, Vitaly},
booktitle = {NIPS},
pages = {15479--15488},
year = {2019}}

@misc{dpmeminf,
title={Privacy for All: Demystify Vulnerability Disparity of Differential Privacy against Membership Inference Attack},
author={Bo Zhang and Ruotong Yu and Haipei Sun and Yanying Li and Jun Xu and Hui Wang},
year={2020},
eprint={2001.08855}
}









@article{advfair,
  author    = {Alex Beutel and Jilin Chen and Zhe Zhao and Ed H. Chi},
  title     = {Data Decisions and Theoretical Implications when Adversarially Learning Fair Representations},
  year      = {2017},
  eprint    = {1707.00075}
}

@article{propinf,
  title={Dataset-Level Attribute Leakage in Collaborative Learning},
  author={Zhang, Wanrong and Tople, Shruti and Ohrimenko, Olga},
  journal={arXiv:2006.07267},
  year={2020}
}

@article{propinf2,
author = {Ateniese, Giuseppe and Mancini, Luigi V. and Spognardi, Angelo and Villani, Antonio and Vitali, Domenico and Felici, Giovanni},
title = {Hacking Smart Machines with Smarter Ones: How to Extract Meaningful Data from Machine Learning Classifiers},
year = {2015},
volume = {10},
number = {3},
journal = {Int. J. Secur. Netw.},
month = sep,
pages = {137–150}
}

@inproceedings{10.5555/3042817.3042973,
author = {Zemel, Richard and Wu, Yu and Swersky, Kevin and Pitassi, Toniann and Dwork, Cynthia},
title = {Learning Fair Representations},
year = {2013},
booktitle = {ICML}
}

@article{10.5555/3122009.3208010,
author = {Hamm, Jihun},
title = {Minimax Filter: Learning to Preserve Privacy from Inference Attacks},
year = {2017},
volume = {18},
number = {1},
journal = {J. Mach. Learn. Res.},
month = jan,
pages = {4704–4734}
}

@inproceedings{10.5555/3327546.3327583,
author = {Moyer, Daniel and Gao, Shuyang and Brekelmans, Rob and Steeg, Greg Ver and Galstyan, Aram},
title = {Invariant Representations without Adversarial Training},
year = {2018},
booktitle = {NIPS}
}

@inproceedings{10.5555/3294771.3294827,
author = {Xie, Qizhe and Dai, Zihang and Du, Yulun and Hovy, Eduard and Neubig, Graham},
title = {Controllable Invariance through Adversarial Feature Learning},
year = {2017},
booktitle = {NIPS}
}

@InProceedings{pmlr-v80-madras18a,
  title = 	 {Learning Adversarially Fair and Transferable Representations},
  author =       {Madras, David and Creager, Elliot and Pitassi, Toniann and Zemel, Richard},
  pages = 	 {3384--3393},
  year = 	 {2018},
  volume = 	 {80},
  series = 	 {Proceedings of Machine Learning Research},
}

@inproceedings{censoringadv,
title     = "Censoring Representations with an Adversary",
author    = "Harrison Edwards and Amos Storkey",
year      = "2016",
booktitle = “ICLR”}






@inproceedings{propinf3,
author = {Ganju, Karan and Wang, Qi and Yang, Wei and Gunter, Carl A. and Borisov, Nikita},
title = {Property Inference Attacks on Fully Connected Neural Networks Using Permutation Invariant Representations},
year = {2018},
booktitle = {CCS},
pages = {619–633}
}

@inproceedings {whiteboxmeminf,
author = {Klas Leino and Matt Fredrikson},
title = {Stolen Memories: Leveraging Model Memorization for Calibrated White-Box Membership Inference},
booktitle = {USENIX Security},
year = {2020},
pages = {1605--1622}
}


@inproceedings{modelinv,
author = {Fredrikson, Matt and Jha, Somesh and Ristenpart, Thomas},
title = {Model Inversion Attacks That Exploit Confidence Information and Basic Countermeasures},
year = {2015},
booktitle = {CCS},
pages = {1322–1333}
}

@inproceedings{advtrain,
author = {Louppe, Gilles and Kagan, Michael and Cranmer, Kyle},
title = {Learning to Pivot with Adversarial Networks},
year = {2017},
booktitle = {NeurIPS},
pages = {982–991}
}

@inproceedings {attriguard,
author = {Jinyuan Jia and Neil Zhenqiang Gong},
title = {AttriGuard: A Practical Defense Against Attribute Inference Attacks via Adversarial Machine Learning},
booktitle = {USENIX Security},
year = {2018},
pages = {513--529},
}








@INPROCEEDINGS{fedinference,
author={L. {Melis} and C. {Song} and E. {De Cristofaro} and V. {Shmatikov}},
booktitle={SP},
title={Exploiting Unintended Feature Leakage in Collaborative Learning},
year={2019},
pages={691-706}}

@article{fairmetric,
author  = {Muhammad Bilal Zafar and Isabel Valera and Manuel Gomez-Rodriguez and Krishna P. Gummadi},
title   = {Fairness Constraints: A Flexible Approach for Fair Classification},
journal = {Journal of Machine Learning Research},
year    = {2019},
volume  = {20},
number  = {75},
pages   = {1-42}
}

@inproceedings{fairmetric2,
author = {Hardt, Moritz and Price, Eric and Srebro, Nathan},
title = {Equality of Opportunity in Supervised Learning},
year = {2016},
booktitle = {NIPS},
pages = {3323–3331}
}


@misc{yeom,
      title={Privacy Risk in Machine Learning: Analyzing the Connection to Overfitting}, 
      author={Samuel Yeom and Irene Giacomelli and Matt Fredrikson and Somesh Jha},
      year={2018},
      booktitle = {CSF}
}

@inproceedings{Mahajan2020DoesLS,
  title={Does Learning Stable Features Provide Privacy Benefits for Machine Learning Models?},
  author={Divyat Mahajan, Shruti Tople, Amit Sharma},
  booktitle = {NeurIPS PPML Workshop},
  year={2020}
}

@msic{advrobtool,
    title={Adversarial robustness toolbox},
    howpublished={\url{https://adversarial-robustness-toolbox.org}},
    note = {Accessed: 2021-06-22}
}


@inproceedings{debiase,
author = {Zhang, Brian Hu and Lemoine, Blake and Mitchell, Margaret},
title = {Mitigating Unwanted Biases with Adversarial Learning},
year = {2018},
booktitle = {AIES},
pages = {335–340},
location = {New Orleans, LA, USA}
}

  
@article{preprocessing,
author = {Kamiran, Faisal and Calders, Toon},
year = {2011},
month = {10},
pages = {},
title = {Data Pre-Processing Techniques for Classification without Discrimination},
volume = {33},
journal = {Knowledge and Information Systems},
doi = {10.1007/s10115-011-0463-8}
}


@InProceedings{reductions,
  title = 	 {A Reductions Approach to Fair Classification},
  author =       {Agarwal, Alekh and Beygelzimer, Alina and Dudik, Miroslav and Langford, John and Wallach, Hanna},
  booktitle = 	 {Proceedings of the 35th International Conference on Machine Learning},
  pages = 	 {60--69},
  year = 	 {2018},
  editor = 	 {Dy, Jennifer and Krause, Andreas},
  volume = 	 {80},
  series = 	 {Proceedings of Machine Learning Research},
  month = 	 {10--15 Jul},
  publisher =    {PMLR},
  pdf = 	 {http://proceedings.mlr.press/v80/agarwal18a/agarwal18a.pdf},
  url = 	 {http://proceedings.mlr.press/v80/agarwal18a.html},
  abstract = 	 {We present a systematic approach for achieving fairness in a binary classification setting. While we focus on two well-known quantitative definitions of fairness, our approach encompasses many other previously studied definitions as special cases. The key idea is to reduce fair classification to a sequence of cost-sensitive classification problems, whose solutions yield a randomized classifier with the lowest (empirical) error subject to the desired constraints. We introduce two reductions that work for any representation of the cost-sensitive classifier and compare favorably to prior baselines on a variety of data sets, while overcoming several of their disadvantages.}
}
@article{recomender,
   title={Data Poisoning Attacks to Deep Learning Based Recommender Systems},
   ISBN={1891562665},
   url={http://dx.doi.org/10.14722/ndss.2021.24525},
   DOI={10.14722/ndss.2021.24525},
   journal={Proceedings 2021 Network and Distributed System Security Symposium},
   publisher={Internet Society},
   author={Huang, Hai and Mu, Jiaming and Gong, Neil Zhenqiang and Li, Qi and Liu, Bin and Xu, Mingwei},
   year={2021}
}


@book{ortiz2015smartphone,
	title={Smartphone-based human activity recognition},
	author={Reyes-Ortiz, J. L.},
	year={2015},
	publisher={Springer}
}

% Encoding: UTF-8

@inproceedings{DBLP:conf/srds/ContiuVPPFR19,
  author    = {Stefan Contiu and
               S{\'{e}}bastien Vaucher and
               Rafael Pires and
               Marcelo Pasin and
               Pascal Felber and
               Laurent R{\'{e}}veill{\`{e}}re},
  title     = {Anonymous and Confidential File Sharing over Untrusted Clouds},
  booktitle = {SRDS},
  pages     = {21--31},
  year      = {2019},
}

@article{10.1504/IJSN.2015.071829,
author = {Ateniese, Giuseppe and Mancini, Luigi V. and Spognardi, Angelo and Villani, Antonio and Vitali, Domenico and Felici, Giovanni},
title = {Hacking Smart Machines with Smarter Ones: How to Extract Meaningful Data from Machine Learning Classifiers},
year = {2015},
volume = {10},
number = {3},
journal = {Int. J. Secur. Netw.},
month = sep,
pages = {137–150},
numpages = {14}
}



@article{salem2018mlleaks,
      title={ML-Leaks: Model and Data Independent Membership Inference Attacks and Defenses on Machine Learning Models}, 
      author={Ahmed Salem and Yang Zhang and Mathias Humbert and Pascal Berrang and Mario Fritz and Michael Backes},
      year={2018},
      journal={arXiv:1806.01246},
}

@inproceedings{DBLP:conf/middleware/SilvaMCNRR19,
  author    = {Simon Da Silva and
               Sonia Ben Mokhtar and
               Stefan Contiu and
               Daniel N{\'{e}}gru and
               Laurent R{\'{e}}veill{\`{e}}re and
               Etienne Rivi{\`{e}}re},
  title     = {PrivaTube: Privacy-Preserving Edge-Assisted Video Streaming},
  booktitle = {Middleware},
  pages     = {189--201},
  year      = {2019},
}

@inproceedings{duriakova2019pdmfrec,
  title={{PDMFRec}: a decentralised matrix factorisation with tunable user-centric privacy},
  author={Duriakova, Erika and Tragos, Elias Z and Smyth, Barry and Hurley, Neil and Pe{\~n}a, Francisco J and Symeonidis, Panagiotis and Geraci, James and Lawlor, Aonghus},
  booktitle={RecSys},
  pages={457--461},
  year={2019},
}

@article{shin2018privacy,
  title={Privacy enhanced matrix factorization for recommendation with local differential privacy},
  author={Shin, Hyejin and Kim, Sungwook and Shin, Junbum and Xiao, Xiaokui},
  journal={TKDE},
  volume={30},
  number={9},
  pages={1770--1782},
  year={2018},
}
@inproceedings{dwork2008differential,
  title={Differential privacy: A survey of results},
  author={Dwork, Cynthia},
  booktitle={TAMC},
  pages={1--19},
  year={2008},
}

@inproceedings{wang2019cryptorec,
  title={Novel Collaborative Filtering Recommender Friendly to Privacy Protection},
  author={Wang, Jun and Tang, Qiang and Arriaga, Afonso and Ryan, Peter YA},
  booktitle={IJCAI},
  year={2019}
}
@inproceedings{narayanan2008robust,
  title={Robust de-anonymization of large datasets (how to break anonymity of the Netflix prize dataset)},
  author={Narayanan, Arvind and Shmatikov, Vitaly},
  booktitle={S\&P},
  year={2008}
}

@article{zhang2020datasetlevel,
      title={Dataset-Level Attribute Leakage in Collaborative Learning}, 
      author={Wanrong Zhang and Shruti Tople and Olga Ohrimenko},
      year={2020},
      journal={arXiv:2006.07267}
}

@inproceedings{calandrino2011you,
  title={"You might also like:" Privacy risks of collaborative filtering},
  author={Calandrino, Joseph A and Kilzer, Ann and Narayanan, Arvind and Felten, Edward W and Shmatikov, Vitaly},
  booktitle={S\&P},
  pages={231--246},
  year={2011},
}
@article{mousa2015trust,
  title={Trust management and reputation systems in mobile participatory sensing applications: A survey},
  author={Mousa, Hayam and Mokhtar, Sonia Ben and Hasan, Omar and Younes, Osama and Hadhoud, Mohiy and Brunie, Lionel},
  journal={Computer Networks},
  volume={90},
  pages={49--73},
  year={2015},
}
@inproceedings{butin2015guide,
  title={A guide to end-to-end privacy accountability},
  author={Butin, Denis and Le M{\'e}tayer, Daniel},
  booktitle={TEchnical and LEgal aspects of data pRivacy and SEcurity},
  pages={20--25},
  year={2015},
}
@article{gunes2014shilling,
  title={Shilling attacks against recommender systems: a comprehensive survey},
  author={Gunes, Ihsan and Kaleli, Cihan and Bilge, Alper and Polat, Huseyin},
  journal={Artificial Intelligence Review},
  volume={42},
  number={4},
  pages={767--799},
  year={2014},
}

@inproceedings{boutet2018collaborative,
  title={Collaborative filtering under a sybil attack: Similarity metrics do matter!},
  author={Boutet, Antoine and De Moor, Florestant and Frey, Davide and Guerraoui, Rachid and Kermarrec, Anne-Marie and Rault, Antoine},
  booktitle={DSN},
  pages={466--477},
  year={2018},
}
@article{boutet2016privacy,
  title={Privacy-preserving distributed collaborative filtering},
  author={Boutet, Antoine and Frey, Davide and Guerraoui, Rachid and J{\'e}gou, Arnaud and Kermarrec, Anne-Marie},
  journal={Computing},
  volume={98},
  number={8},
  pages={827--846},
  year={2016},
}
@inproceedings{gan2020enhancing,
  title={Enhancing recommendation diversity using determinantal point processes on knowledge graphs},
  author={Gan, Lu and Nurbakova, Diana and Laporte, L{\'e}a and Calabretto, Sylvie},
  booktitle={SIGIR},
  pages={2001--2004},
  year={2020}
}
@inproceedings{diarra2014fullreview,
  title={Fullreview: Practical accountability in presence of selfish nodes},
  author={Diarra, Amadou and Mokhtar, Sonia Ben and Aublin, Pierre-Louis and Qu{\'e}ma, Vivien},
  booktitle={SRDS},
  pages={271--280},
  year={2014},
}

@inproceedings{contiu2018ibbe,
  title={IBBE-SGX: Cryptographic group access control using trusted execution environments},
  author={Contiu, Stefan and Pires, Rafael and Vaucher, S{\'e}bastien and Pasin, Marcelo and Felber, Pascal and R{\'e}veill{\`e}re, Laurent},
  booktitle={DSN},
  pages={207--218},
  year={2018},
}

@article{damaskinos2020fleet,
  title={FLeet: Online Federated Learning via Staleness Awareness and Performance Prediction},
  author={Damaskinos, Georgios and Guerraoui, Rachid and Kermarrec, Anne-Marie and Nitu, Vlad and Patra, Rhicheek and Taiani, Francois},
  journal={arXiv:2006.07273},
  year={2020}
}

@inproceedings{jiang2020detection,
  title={On the Detection of Shilling Attacks in Federated Collaborative Filtering},
  author={Jiang, Yangfan and Zhou, Yipeng and Wu, Di and Li, Chao and Wang, Yan},
  booktitle={SRDS},
  pages={185--194},
  year={2020},
}

@article{bonawitz2016practical,
  title={Practical secure aggregation for federated learning on user-held data},
  author={Bonawitz, Keith and Ivanov, Vladimir and Kreuter, Ben and Marcedone, Antonio and McMahan, H Brendan and Patel, Sarvar and Ramage, Daniel and Segal, Aaron and Seth, Karn},
  journal={arXiv:1611.04482},
  year={2016}
}



@article{wang2020attack,
  title={Attack of the tails: Yes, you really can backdoor federated learning},
  author={Wang, Hongyi and Sreenivasan, Kartik and Rajput, Shashank and Vishwakarma, Harit and Agarwal, Saurabh and Sohn, Jy-yong and Lee, Kangwook and Papailiopoulos, Dimitris},
  journal={arXiv:2007.05084},
  year={2020}
}

@inproceedings{muhammad2020fedfast,
  title={FedFast: Going Beyond Average for Faster Training of Federated Recommender Systems},
  author={Muhammad, Khalil and Wang, Qinqin and O'Reilly-Morgan, Diarmuid and Tragos, Elias and Smyth, Barry and Hurley, Neil and Geraci, James and Lawlor, Aonghus},
  booktitle={SIGKDD},
  pages={1234--1242},
  year={2020}
}
@article{zhang2018explainable,
  title={Explainable recommendation: A survey and new perspectives},
  author={Zhang, Yongfeng and Chen, Xu},
  volume = {14},
  journal = {Foundations and Trends in Information Retrieval},
  number = {1},
  pages = {1-101},
  year={2020}
}

@inproceedings{fleder2007recommender,
  title={Recommender systems and their impact on sales diversity},
  author={Fleder, Daniel M and Hosanagar, Kartik},
  booktitle={Conference on Electronic Commerce},
  pages={192--199},
  year={2007},
}

@inproceedings{garcin2014offline,
  title={Offline and online evaluation of news recommender systems at {swissinfo.ch}},
  author={Garcin, Florent and Faltings, Boi and Donatsch, Olivier and Alazzawi, Ayar and Bruttin, Christophe and Huber, Amr},
  booktitle={RecSys},
  pages={169--176},
  year={2014},
}

@inproceedings{ge2010beyond,
  title={Beyond accuracy: evaluating recommender systems by coverage and serendipity},
  author={Ge, Mouzhi and Delgado-Battenfeld, Carla and Jannach, Dietmar},
  booktitle={RecSys},
  pages={257--260},
  year={2010},
}

@article{bobadilla2013recommender,
  title={Recommender systems survey},
  author={Bobadilla, Jes{\'u}s and Ortega, Fernando and Hernando, Antonio and Guti{\'e}rrez, Abraham},
  journal={Knowledge-Based Systems},
  volume={46},
  __pages={109--132},
  year={2013},
}

@inproceedings{tan2020federated,
  title={A Federated Recommender System for Online Services},
  author={Tan, Ben and Liu, Bo and Zheng, Vincent and Yang, Qiang},
  booktitle={RecSys},
  pages={579--581},
  year={2020}
}

@inproceedings{gao2020dplcf,
  title={DPLCF: Differentially Private Local Collaborative Filtering},
  author={Gao, Chen and Huang, Chao and Lin, Dongsheng and Jin, Depeng and Li, Yong},
  booktitle={SIGIR},
  pages={961--970},
  year={2020}
}

@inproceedings{guerraoui2017know,
  title={I know nothing about you but here is what you might like},
  author={Guerraoui, Rachid and Kermarrec, Anne-Marie and Patra, Rhicheek and Valiyev, Mahammad and Wang, Jingjing},
  booktitle={DSN},
  pages={439--450},
  year={2017},
}


@article{MovieLens,
 author = {Harper, F. Maxwell and Konstan, Joseph A.},
 title = {The MovieLens Datasets: History and Context},
 journal = {TIIS},
 volume={5},
 number={4},
 year={2016},
}

@incollection{burke2015robust,
  title={Robust collaborative recommendation},
  author={Burke, Robin and O’Mahony, Michael P and Hurley, Neil J},
  booktitle={Recommender systems handbook},
  pages={961--995},
  year={2015},
}

@inproceedings{dasilva2019privatube,
  title={PrivaTube: Privacy-Preserving Edge-Assisted Video Streaming},
  author={Da Silva, Simon and Ben Mokhtar, Sonia and Contiu, Stefan and N{\'e}gru, Daniel and R{\'e}veill{\`e}re, Laurent and Rivi{\`e}re, Etienne},
  booktitle={Middleware},
  year={2019}
}

@article{haeberlen2007peerreview,
  title={PeerReview: Practical accountability for distributed systems},
  author={Haeberlen, Andreas and Kouznetsov, Petr and Druschel, Peter},
  journal={SIGOPS operating systems review},
  volume={41},
  number={6},
  year={2007},
}

@inproceedings{decouchant2019p3ls,
  title={P3LS: Plausible Deniability for Practical Privacy-Preserving Live Streaming},
  author={Decouchant, J{\'e}r{\'e}mie and Boutet, Antoine and Yu, Jiangshan and Esteves-Verissimo, Paulo},
  booktitle={SRDS},
  year={2019}
}


@article{georgopoulos2014distributed,
  title={Distributed machine learning in networks by consensus},
  author={Georgopoulos, Leonidas and Hasler, Martin},
  journal={Neurocomputing},
  volume={124},
  pages={2--12},
  year={2014},
}

@article{fierimonte2016fully,
  title={Fully decentralized semi-supervised learning via privacy-preserving matrix completion},
  author={Fierimonte, Roberto and Scardapane, Simone and Uncini, Aurelio and Panella, Massimo},
  journal={Transactions on neural networks and learning systems},
  volume={28},
  number={11},
  pages={2699--2711},
  year={2016},
}


@inproceedings{ling2012decentralized,
  title={Decentralized low-rank matrix completion},
  author={Ling, Qing and Xu, Yangyang and Yin, Wotao and Wen, Zaiwen},
  booktitle={ICASSP},
  pages={2925--2928},
  year={2012},
}

@inproceedings{chang2014factorized,
  title={Factorized similarity learning in networks},
  author={Chang, Shiyu and Qi, Guo-Jun and Aggarwal, Charu C and Zhou, Jiayu and Wang, Meng and Huang, Thomas S},
  booktitle={ICDM},
  pages={60--69},
  year={2014},
}

@inproceedings{boutet:hal-00769291,
  TITLE = {{WhatsUp Decentralized Instant News Recommender}},
  AUTHOR = {Boutet, Antoine and Frey, Davide and Guerraoui, Rachid and J{\'e}gou, Arnaud and Kermarrec, Anne-Marie},
  BOOKTITLE = {IPDPS},
  YEAR = {2013},
}


@article{koren2009matrix,
  title={Matrix factorization techniques for recommender systems},
  author={Koren, Yehuda and Bell, Robert and Volinsky, Chris},
  journal={Computer},
  volume={42},
  number={8},
  pages={30--37},
  year={2009},
}


@misc{eachmovie,
    title={EachMovie collaborative filtering data set},
    howpublished={https://www.cs.cmu.edu/~lebanon/IR-lab/data.html}
}

@Book{Pearl1988,
  title     = {\href{https://dl.acm.org/citation.cfm?id=52121}{Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference}},
  publisher = {Morgan Kaufmann},
  year      = {1988},
  author    = {Pearl, J.},
  owner     = {Vincent},
  timestamp = {2018.03.25},
}

@Article{Zadeh1965,
  author    = {Zadeh, L. A.},
  title     = {\href{https://doi.org/10.1016/S0019-9958(65)90241-X}{Fuzzy sets}},
  journal   = {Information and Control},
  year      = {1965},
  volume    = {8},
  number    = {3},
  pages     = {338-353},
  owner     = {Vincent},
  timestamp = {2018.03.25},
}

@InProceedings{Agrawal1993,
  author    = {Agrawal, R. and Imieliński, T. and Swami, A.},
  title     = {\href{https://doi.org/10.1145/170036.170072}{Mining association rules between sets of items in large databases}},
  booktitle = {ACM SIGMOD International Conference on Management of data},
  year      = {1993},
  pages     = {207-216},
  owner     = {Vincent},
  timestamp = {2018.03.25},
}

@misc{ppstream,
    title={PPStream},
    howpublished={http://www.ppstream.com}
}

@inproceedings{datta2015automated,
      title={Automated Experiments on Ad Privacy Settings: A Tale of Opacity, Choice, and Discrimination}, 
      author={Amit Datta and Michael Carl Tschantz and Anupam Datta},
      year={2015},
      booktitle={PETS},
}

@inproceedings{barkan2020explainable,
  title={Explainable recommendations via attentive multi-persona collaborative filtering},
  author={Barkan, Oren and Fuchs, Yonatan and Caciularu, Avi and Koenigstein, Noam},
  booktitle={RecSys},
  pages={468--473},
  year={2020}
}

@inproceedings{Afchar_2020,
   title={Making Neural Networks Interpretable with Attribution: Application to Implicit Signals Prediction},
   booktitle={RecSys},
   author={Afchar, Darius and Hennequin, Romain},
   year={2020},
}

@inproceedings{Schnabel2020TheIO,
  title={The Impact of More Transparent Interfaces on Behavior in Personalized Recommendation},
  author={Tobias Schnabel and Saleema Amershi and P. Bennett and P. Bailey and T. Joachims}}

@BOOK{Bourrigan2021-dd,
  title    = "Maths {MPSI-MP2I}: tout-en-un",
  author   = "Bourrigan, Maxime and Delsinne, Emmanuel and Gentric, Yoann and
              Lussier, Fran{\c c}ois and Mullaert, Chlo{\'e} and ), Serge
              Nicolas (math{\'e}maticien) and Nougayr{\`e}de, Jean and
              T{\^e}te, Claire and Volcker, Michel",
  year     =  2021,
  language = "fr"
}