summaryrefslogtreecommitdiff
path: root/biblio.bib
blob: fc03fdc9d2a346683196d48c405788414243a7af (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
######################################"
#Background
@BOOK{lecun2019quand,
  title     = "Quand la machine apprend",
  author    = "Le Cun, Yann",
  publisher = "Odile Jacob",
  month     =  oct,
  year      =  2019,
  address   = "Paris, France",
  language  = "fr"
}

#Set
@book{enderton1977elements,
  title={Elements of set theory},
  author={Enderton, Herbert B},
  year={1977},
  publisher={Academic press}
}

#Mesure
@misc{mesure,
    howpublished={\url{https://www-fourier.ujf-grenoble.fr/~edumas/integration.pdf}},
    title={Théorie de la mesure et de l’intégration},
    author={Gallay, Thierry},
    note={Dernier accès: 2024-08-29}
}

@misc{proba,
    title={\url{Intégration, Probabilitées et Processus Aléatoires}},
    howpublished={\url{https://www.imo.universite-paris-saclay.fr/~jean-francois.le-gall/IPPA2.pdf}},
    author={Le Gall, Jean-François},
    note={Dernier accès: 2024-08-29}
}

#Optimisation
@BOOK{ciarlet,
  title    = "Introduction {\`a} l'an{\'a}lyse num{\'e}rique matricielle et
              {\`a} l'optimisation: cours et exercices corrig{\'e}s",
  author   = "Ciarlet, Philippe G",
  year     =  2006,
  language = "fr"
}



#Machine learning

@BOOK{lecun2019quand,
  title     = "Quand la machine apprend",
  author    = "Le Cun, Yann",
  publisher = "Odile Jacob",
  month     =  oct,
  year      =  2019,
  address   = "Paris, France",
  language  = "fr"
}


@article{zou2016finding,
  title={Finding the best classification threshold in imbalanced classification},
  author={Zou, Quan and Xie, Sifa and Lin, Ziyu and Wu, Meihong and Ju, Ying},
  journal={Big Data Research},
  volume={5},
  pages={2--8},
  year={2016},
  publisher={Elsevier}
}


@article{bottou1991stochastic,
  title={Stochastic gradient learning in neural networks},
  author={Bottou, L{\'e}on and others},
  journal={Proceedings of Neuro-N{\i}mes},
  volume={91},
  number={8},
  pages={12},
  year={1991},
  publisher={Nimes}
}

@incollection{bottou2012stochastic,
  title={Stochastic gradient descent tricks},
  author={Bottou, L{\'e}on},
  booktitle={Neural Networks: Tricks of the Trade: Second Edition},
  pages={421--436},
  year={2012},
  publisher={Springer}
}

@article{amari1993back,
  title={Backpropagation and stochastic gradient descent method},
  author={Amari, Shun-ichi},
  journal={Neurocomputing},
  volume={5},
  number={4-5},
  pages={185--196},
  year={1993},
  publisher={Elsevier}
}

@article{kumari2017machine,
  title={Machine learning: A review on binary classification},
  author={Kumari, Roshan and Srivastava, Saurabh Kr},
  journal={International Journal of Computer Applications},
  volume={160},
  number={7},
  year={2017},
  publisher={Foundation of Computer Science}
}
@article{li2020statistical,
  title={Statistical hypothesis testing versus machine learning binary classification: Distinctions and guidelines},
  author={Li, Jingyi Jessica and Tong, Xin},
  journal={Patterns},
  volume={1},
  number={7},
  year={2020},
  publisher={Elsevier}
}
@article{canbek2022ptopi,
  title={PToPI: A comprehensive review, analysis, and knowledge representation of binary classification performance measures/metrics},
  author={Canbek, G{\"u}rol and Taskaya Temizel, Tugba and Sagiroglu, Seref},
  journal={SN Computer Science},
  volume={4},
  number={1},
  pages={13},
  year={2022},
  publisher={Springer}
}

@misc{insee1982parite,
    howpublished={\url{https://www.insee.fr/fr/statistiques/4768237}},
    title={Les cadres : de plus en plus de femmes},
    author={Forment, Virginie and Vidalenc, Joëlle},
    note={Dernier accès: 2024-08-26}
}

@article{chicco2021matthews,
  title={The Matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation},
  author={Chicco, Davide and T{\"o}tsch, Niklas and Jurman, Giuseppe},
  journal={BioData mining},
  volume={14},
  pages={1--22},
  year={2021},
  publisher={Springer}
}


    








############################################""
#Enjeux
#Securité
#Backdoor
@article{gao2020backdoor,
  title={Backdoor attacks and countermeasures on deep learning: A comprehensive review},
  author={Gao, Yansong and Doan, Bao Gia and Zhang, Zhi and Ma, Siqi and Zhang, Jiliang and Fu, Anmin and Nepal, Surya and Kim, Hyoungshick},
  journal={arXiv preprint arXiv:2007.10760},
  year={2020}
}

@inproceedings{doan2021lira,
  title={Lira: Learnable, imperceptible and robust backdoor attacks},
  author={Doan, Khoa and Lao, Yingjie and Zhao, Weijie and Li, Ping},
  booktitle={Proceedings of the IEEE/CVF international conference on computer vision},
  pages={11966--11976},
  year={2021}
}

#Confidentialité 
@misc{discordgpt,
    title={In-Channel Conversation Summaries},
    author={\url{https://support.discord.com/hc/en-us/profiles/2921470028-Buffy}},
    howpublished={\url{https://support.discord.com/hc/en-us/articles/12926016807575-In-Channel-Conversation-Summaries}},
    note={Dernier accès: 2024-08-26}
}






#####################################################""
#Echelle institutionelle 

#Justice prédictive
@article{brayne2015predictive,
  title={Predictive policing},
  author={Brayne, Sarah and Rosenblat, Alex and Boyd, Danah},
  journal={Data \& Civil Rights: A New Era Of Policing And Justice},
  pages={2015--1027},
  year={2015}
}

@misc{soundthinking,
    howpublished={\url{https://www.soundthinking.com/}},
    title={Soundthinking},
    note={Dernier accès: 2024-08-16}
}


@article{
zhiyuan2020limits,
author = {Zhiyuan “Jerry” Lin  and Jongbin Jung  and Sharad Goel  and Jennifer Skeem },
title = {The limits of human predictions of recidivism},
journal = {Science Advances},
volume = {6},
number = {7},
pages = {eaaz0652},
year = {2020},
doi = {10.1126/sciadv.aaz0652},
URL = {https://www.science.org/doi/abs/10.1126/sciadv.aaz0652},
eprint = {https://www.science.org/doi/pdf/10.1126/sciadv.aaz0652},
abstract = {Statistical algorithms can outperform human predictions of recidivism. Dressel and Farid recently found that laypeople were as accurate as statistical algorithms in predicting whether a defendant would reoffend, casting doubt on the value of risk assessment tools in the criminal justice system. We report the results of a replication and extension of Dressel and Farid’s experiment. Under conditions similar to the original study, we found nearly identical results, with humans and algorithms performing comparably. However, algorithms beat humans in the three other datasets we examined. The performance gap between humans and algorithms was particularly pronounced when, in a departure from the original study, participants were not provided with immediate feedback on the accuracy of their responses. Algorithms also outperformed humans when the information provided for predictions included an enriched (versus restricted) set of risk factors. These results suggest that algorithms can outperform human predictions of recidivism in ecologically valid settings.}}

@misc{equivant,
    howpublished={\url{https://www.equivant.com/}},
    title={Equivant},
    note={Dernier accès: 2024-07-24}
}
@article{dildar2021skin,
  title={Skin cancer detection: a review using deep learning techniques},
  author={Dildar, Mehwish and Akram, Shumaila and Irfan, Muhammad and Khan, Hikmat Ullah and Ramzan, Muhammad and Mahmood, Abdur Rehman and Alsaiari, Soliman Ayed and Saeed, Abdul Hakeem M and Alraddadi, Mohammed Olaythah and Mahnashi, Mater Hussen},
  journal={International journal of environmental research and public health},
  volume={18},
  number={10},
  pages={5479},
  year={2021},
  publisher={MDPI}
}


####################################
#Médecine
@article{gulshan2016development,
  title={Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs},
  author={Gulshan, Varun and Peng, Lily and Coram, Marc and Stumpe, Martin C and Wu, Derek and Narayanaswamy, Arunachalam and Venugopalan, Subhashini and Widner, Kasumi and Madams, Tom and Cuadros, Jorge and others},
  journal={jama},
  volume={316},
  number={22},
  pages={2402--2410},
  year={2016},
  publisher={American Medical Association}
}

@article{quinn2022three,
  title={The three ghosts of medical AI: Can the black-box present deliver?},
  author={Quinn, Thomas P and Jacobs, Stephan and Senadeera, Manisha and Le, Vuong and Coghlan, Simon},
  journal={Artificial intelligence in medicine},
  volume={124},
  pages={102158},
  year={2022},
  publisher={Elsevier}
}


##################################
#Recrutement
@misc{fortune500,
    title={Fortune 500},
    howpublished={\url{https://fortune.com/ranking/global500/}},
    note={Dernier accès: 2024-07-24}
}

@article{ore2022opportunities,
  title={Opportunities and risks of artificial intelligence in recruitment and selection},
  author={Ore, Olajide and Sposato, Martin},
  journal={International Journal of Organizational Analysis},
  volume={30},
  number={6},
  pages={1771--1782},
  year={2022},
  publisher={Emerald Publishing Limited}
}

@inproceedings{al2021role,
  title={The role of artificial intelligence in recruitment process decision-making},
  author={Al-Alawi, Adel Ismail and Naureen, Misbah and AlAlawi, Ebtesam Ismaeel and Al-Hadad, Ahmed Abdulla Naser},
  booktitle={2021 International Conference on Decision Aid Sciences and Application (DASA)},
  pages={197--203},
  year={2021},
  organization={IEEE}
}

@misc{segal2021fairnesseyesdatacertifying,
      title={Fairness in the Eyes of the Data: Certifying Machine-Learning Models}, 
      author={Shahar Segal and Yossi Adi and Benny Pinkas and Carsten Baum and Chaya Ganesh and Joseph Keshet},
      year={2021},
      eprint={2009.01534},
      archivePrefix={arXiv},
      primaryClass={cs.AI},
      url={https://arxiv.org/abs/2009.01534}, 
}
@article{Hardt2016equality,
  author    = {Moritz Hardt and
               Eric Price and
               Nathan Srebro},
  title     = {Equality of Opportunity in Supervised Learning},
  journal   = {CoRR},
  volume    = {abs/1610.02413},
  year      = {2016},
  url       = {http://arxiv.org/abs/1610.02413},
  eprinttype = {arXiv},
  eprint    = {1610.02413},
  timestamp = {Tue, 26 Apr 2022 09:17:17 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/HardtPS16.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

@misc{Dwork2011fairness,
  doi = {10.48550/ARXIV.1104.3913},
  
  url = {https://arxiv.org/abs/1104.3913},
  
  author = {Dwork, Cynthia and Hardt, Moritz and Pitassi, Toniann and Reingold, Omer and Zemel, Rich},
  
  keywords = {Computational Complexity (cs.CC), Computers and Society (cs.CY), FOS: Computer and information sciences, FOS: Computer and information sciences},
  
  title = {Fairness Through Awareness},
  
  publisher = {arXiv},
  
  year = {2011},
  
  copyright = {arXiv.org perpetual, non-exclusive license}
}



@inproceedings{10.1145/3278721.3278779,
author = {Zhang, Brian Hu and Lemoine, Blake and Mitchell, Margaret},
title = {Mitigating Unwanted Biases with Adversarial Learning},
year = {2018},
isbn = {9781450360128},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3278721.3278779},
doi = {10.1145/3278721.3278779},
abstract = {Machine learning is a tool for building models that accurately represent input training data. When undesired biases concerning demographic groups are in the training data, well-trained models will reflect those biases. We present a framework for mitigating such biases by including a variable for the group of interest and simultaneously learning a predictor and an adversary. The input to the network X, here text or census data, produces a prediction Y, such as an analogy completion or income bracket, while the adversary tries to model a protected variable Z, here gender or zip code. The objective is to maximize the predictor's ability to predict Y while minimizing the adversary's ability to predict Z. Applied to analogy completion, this method results in accurate predictions that exhibit less evidence of stereotyping Z. When applied to a classification task using the UCI Adult (Census) Dataset, it results in a predictive model that does not lose much accuracy while achieving very close to equality of odds (Hardt, et al., 2016). The method is flexible and applicable to multiple definitions of fairness as well as a wide range of gradient-based learning models, including both regression and classification tasks.},
booktitle = {Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society},
pages = {335–340},
numpages = {6},
keywords = {multi-task learning, debiasing, adversarial learning, unbiasing},
location = {New Orleans, LA, USA},
series = {AIES '18}
}








#####################################################""
#Echelle individuelle 

@misc{applewatch,
    title={WatchOS 11 brings powerful health and fitness insights, and even more personalization and connectivity },
    howpublished={\url{https://www.apple.com/newsroom/2024/06/watchos-11-brings-powerful-health-and-fitness-insights/}},
    note={Dernier accès: 2024-07-24}
}

@inproceedings{barthelemy:hal-01837361,
  TITLE = {{Pl@ntNet, une plate-forme innovante d'agr{\'e}gation et partage d'observations botaniques}},
  AUTHOR = {Barth{\'e}l{\'e}my, Daniel and Boujemaa, Nozha and Molino, Jean-Fran{\c c}ois and Joly, Alexis and Go{\"e}au, Herv{\'e} and Baki{\'c}, Vera and Selmi, Souheil and Champ, Julien and Carre, Jennifer and Chouet, Mathias and Perronnet, Aur{\'e}lien and Vignau, Christelle and Dufour-Kowalski, Samuel and Affouard, Antoine and Barbe, Julien and Bonnet, Pierre},
  URL = {https://hal.science/hal-01837361},
  BOOKTITLE = {{International Conference ‘Botanists of the Twenty-first Century'}},
  ADDRESS = {Paris, France},
  ORGANIZATION = {{UNESCO}},
  HAL_LOCAL_REFERENCE = {DEVMP},
  EDITOR = {No{\"e}line R. Rakotoarisoa and Stephen Blackmore and Bernard Riera},
  PAGES = {191-197},
  YEAR = {2014},
  MONTH = Sep,
  KEYWORDS = {Pl@ntNet ; Botany ; Plateforme participative ; Observations botaniques},
  PDF = {https://hal.science/hal-01837361/file/DB_etal_plantnet_plateforme_2016_1.pdf},
  HAL_ID = {hal-01837361},
  HAL_VERSION = {v1},
}

@misc{plantnet,
    title={Pl@ntNet},
    howpublished={\url{https://identify.plantnet.org/}},
    note={Dernier accès: 2024-07-24}
}


@article{dunn2018wearables,
  title={Wearables and the medical revolution},
  author={Dunn, Jessilyn and Runge, Ryan and Snyder, Michael},
  journal={Personalized medicine},
  volume={15},
  number={5},
  pages={429--448},
  year={2018},
  publisher={Taylor \& Francis}
}

########################################"
#Intéret pour l'IA
#Google trend 
@misc{gtrend,
    title={Google trend Intelligence Artificielle},
    howpublished={\url{https://trends.google.com/trends/explore?date=all&geo=FR&q=intelligence%20artificielle&hl=en-US}},
    note={Dernier accès: 2024-07-24}
}

####################################""
#Stratégie AI de la France
@misc{france2030,
    title={France 2030},
    howpublished={\url{https://www.info.gouv.fr/grand-dossier/france-2030}},
    note={Dernier accès: 2024-07-24}
}

@misc{stratfr,
    title={La stratégie nationale pour l'intelligence artificielle},
    howpublished={\url{https://www.entreprises.gouv.fr/fr/numerique/enjeux/la-strategie-nationale-pour-l-ia}},
    note={Dernier accès: 2024-07-24}
}

@book{villani2018donner,
  TITLE = {{Donner un sens {\`a} l'intelligence artificielle}},
  AUTHOR = {Villani, C{\'e}dric and Schoenauer, Marc and Bonnet, Yann and Berthet, Charly and Cornut, Anne-Charlotte and Levin, Fran{\c c}ois and Rondepierre, Bertrand},
  URL = {https://inria.hal.science/hal-01967551},
  PUBLISHER = {{Mission Villani sur l'intelligence artificielle}},
  YEAR = {2018},
  MONTH = Mar,
  PDF = {https://inria.hal.science/hal-01967551/file/9782111457089_Rapport_Villani_accessible.pdf},
  HAL_ID = {hal-01967551},
  HAL_VERSION = {v1},
}

%%%%%%%%%%%CLIMATE CHANGE BACKGROUND
@article{barnes2019viewing,
  title={Viewing forced climate patterns through an AI lens},
  author={Barnes, Elizabeth A and Hurrell, James W and Ebert-Uphoff, Imme and Anderson, Chuck and Anderson, David},
  journal={Geophysical Research Letters},
  volume={46},
  number={22},
  pages={13389--13398},
  year={2019},
  publisher={Wiley Online Library}
}

@article{slater2023hybrid,
  title={Hybrid forecasting: blending climate predictions with AI models},
  author={Slater, Louise J and Arnal, Louise and Boucher, Marie-Am{\'e}lie and Chang, Annie Y-Y and Moulds, Simon and Murphy, Conor and Nearing, Grey and Shalev, Guy and Shen, Chaopeng and Speight, Linda and others},
  journal={Hydrology and earth system sciences},
  volume={27},
  number={9},
  pages={1865--1889},
  year={2023},
  publisher={Copernicus Publications G{\"o}ttingen, Germany}
}

%%%%%%%%%%%%ENERGY BACKGROUND
@article{jin2020energy,
  title={Energy and AI},
  author={Jin, Donghan and Ocone, Raffaella and Jiao, Kui and Xuan, Jin},
  journal={Energy and AI},
  volume={1},
  pages={100002},
  year={2020},
  publisher={Elsevier}
}

@article{kumar2020distributed,
  title={Distributed energy resources and the application of AI, IoT, and blockchain in smart grids},
  author={Kumar, Nallapaneni Manoj and Chand, Aneesh A and Malvoni, Maria and Prasad, Kushal A and Mamun, Kabir A and Islam, FR and Chopra, Shauhrat S},
  journal={Energies},
  volume={13},
  number={21},
  pages={5739},
  year={2020},
  publisher={MDPI}
}

@article{kumari2020blockchain,
  title={Blockchain and AI amalgamation for energy cloud management: Challenges, solutions, and future directions},
  author={Kumari, Aparna and Gupta, Rajesh and Tanwar, Sudeep and Kumar, Neeraj},
  journal={Journal of Parallel and Distributed Computing},
  volume={143},
  pages={148--166},
  year={2020},
  publisher={Elsevier}
}

@article{ngarambe2020use,
  title={The use of artificial intelligence (AI) methods in the prediction of thermal comfort in buildings: Energy implications of AI-based thermal comfort controls},
  author={Ngarambe, Jack and Yun, Geun Young and Santamouris, Mat},
  journal={Energy and Buildings},
  volume={211},
  pages={109807},
  year={2020},
  publisher={Elsevier}
}


%%%%%OPEN AI 

@misc{openaibfm,
    title={OpenAI, cette société qui révolutionne l'intelligence artificielle},
    howpublished={\url{https://www.bfmtv.com/tech/intelligence-artificielle/open-ai-cette-societe-qui-revolutionne-l-intelligence-artificielle_DN-202311200564.html}},
    note={Dernier accès: 2024-07-24}
}

@misc{openaiinter,
    title={Intelligence artificielle : pourquoi Sam Altman, créateur de ChatGPT, a été débarqué d'OpenAI},
    howpublished={\url{https://www.radiofrance.fr/franceinter/ce-que-l-on-sait-du-renvoi-de-sam-altman-patron-d-openai-et-createur-de-chatgpt-5672369}},
    note={Dernier accès: 2024-07-24}
}

@misc{openaint,
    title={OpenAI Says It Has Begun Training a New Flagship A.I. Model},
    howpublished={\url{https://www.nytimes.com/2024/05/28/technology/openai-gpt4-new-model.html}},
    note={Dernier accès: 2024-07-24}
}

@misc{openaibig,
    title={ChatGPT sets record for fastest-growing user base - analyst note},
    howpublished={\url{https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/}},
    note={Dernier accès: 2024-07-24}
}

@misc{gptjournal,
    title={ChatGPT : le quotidien Le Monde signe un partenariat avec OpenAI, une première en France},
    howpublished={\url{https://www.radiofrance.fr/franceinter/podcasts/l-info-de-france-inter/les-doc-france-inter-du-jeudi-14-mars-3-7619379}},
    note={Dernier accès: 2024-07-24}
}

##################################
#Chine surveillance de la population

@article{beraja2023ai,
  title={AI-tocracy},
  author={Beraja, Martin and Kao, Andrew and Yang, David Y and Yuchtman, Noam},
  journal={The Quarterly Journal of Economics},
  volume={138},
  number={3},
  pages={1349--1402},
  year={2023},
  publisher={Oxford University Press}
}

################################
#Définition
@article{baum2017survey,
  title={A survey of artificial general intelligence projects for ethics, risk, and policy},
  author={Baum, Seth},
  journal={Global Catastrophic Risk Institute Working Paper},
  pages={17--1},
  year={2017}
}

@inproceedings{kuppa2021towards,
  title={Towards improving privacy of synthetic datasets},
  author={Kuppa, Aditya and Aouad, Lamine and Le-Khac, Nhien-An},
  booktitle={Annual Privacy Forum},
  pages={106--119},
  year={2021},
  organization={Springer}
}
@inproceedings{arpit2017closer,
  title={A closer look at memorization in deep networks},
  author={Arpit, Devansh and Jastrzebski, Stanislaw and Ballas, Nicolas and Krueger, David and Bengio, Emmanuel and Kanwal, Maxinder S and Maharaj, Tegan and Fischer, Asja and Courville, Aaron and Bengio, Yoshua and others},
  booktitle={International conference on machine learning},
  pages={233--242},
  year={2017},
  organization={PMLR}
}
@inproceedings{feldman2020does,
  title={Does learning require memorization? a short tale about a long tail},
  author={Feldman, Vitaly},
  booktitle={Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing},
  pages={954--959},
  year={2020}
}

@book{theetete,
    title={Théétète},
    author={Platon},
    year={300 av. JC}
}
@book{caverne,
    title={La République},
    author={Platon},
    year={300 av. JC}
}
@misc{dartmouth,
    title={Dartmouth summer research project on artificiale intelligence},
    howpublished={\url{https://raysolomonoff.com/dartmouth/boxa/dart564props.pdf}},
    author={
        McCarthy, John and Minsky, Marvin and Rochester Nathaniel and Shannon, Claude
    },
    note={Dernier accès: 2024-08-05}
}

@misc{banIA,
    title={En 2024, bannissons les termes "intelligence artificielle"},
    howpublished={\url{https://www.radiofrance.fr/franceculture/podcasts/le-biais-d-aurelie-jean/le-biais-d-aurelie-jean-chronique-du-mardi-02-janvier-2024-9653995}},
    author={Jean, Aurélie},
    note={Dernier accès: 2024-08-05}
}

@misc{gnuAI,
    title={Words to Avoid (or Use with Care) Because They Are Loaded or Confusing.},
    howpublished={\url{https://www.gnu.org/philosophy/words-to-avoid.html#ArtificialIntelligence}},
    note={Dernier accès: 2024-08-05}
}
@book{dico-int,
    title={Dictionaire de l'Académie francaise, 9° édition},
    note={\url{http://www.dictionnaire-academie.fr/article/A9I1608}, Dernier accès: 2024-08-05}
}
@book{dico-art,
    title={Dictionaire de l'Académie francaise, 9° édition},
    note={\url{http://www.dictionnaire-academie.fr/article/A9A2706},Dernier accès: 2024-08-05}
}
@book{dico-con,
    title={Dictionaire de l'Académie francaise, 9° édition},
    note={\url{https://www.dictionnaire-academie.fr/article/A9C3633},Dernier accès: 2024-08-16}
}
@misc{underscore,
    title={Cette nouvelle IA est bluffante},
    author={Chaîne Youtube Underscore},
    year={2024},
    howpublished={\url{https://www.youtube.com/watch?v=QUr93cD2ZUs}},
    note={Dernier accès: 2024-08-05}
}
@misc{grep,
    title={grep},
    howpublished={\url{https://www.gnu.org/software/grep/manual/grep.html}},
    note={Dernier accès: 2024-08-05}
}
@misc{ocrad,
    title={Ocrad},
    howpublished={\url{https://www.gnu.org/software/ocrad/ocrad.html}},
    note={Dernier accès: 2024-08-05}
}

@misc{aiact,
    howpublished={\url{https://eur-lex.europa.eu/eli/reg/2024/1689/oj}},

    note={Dernier accès: 2024-09-02},
    title={Regulation (EU) 2024/1689 of the European Parliament and of the Council of 13 June 2024 laying down harmonised rules on artificial intelligence and amending Regulations (EC) No 300/2008, (EU) No 167/2013, (EU) No 168/2013, (EU) 2018/858, (EU) 2018/1139 and (EU) 2019/2144 and Directives 2014/90/EU, (EU) 2016/797 and (EU) 2020/1828 (Artificial Intelligence Act) (Text with EEA relevance)}
}



#########################################
#Philosophie

@misc{siri,
    title={Siri},
    author={Apple},
    howpublished={\url{https://www.apple.com/siri/}},
    note={Dernier accès: 2024-08-26}
}

@misc{discord,
    title={Messagerie Discord},
    author={Discord},
    howpublished={\url{https://discord.com/}},
    note={Dernier accès: 2024-08-26}
}

@misc{googleai,
    title={Google assistant},
    author={Google},
    howpublished={\url{https://assistant.google.com/}},
    note={Dernier accès: 2024-08-26}
}

@misc{aaigpt,
    title={Apple inteligence ChatGPT},
    author={Apple},
    howpublished={\url{https://www.apple.com/newsroom/2024/06/introducing-apple-intelligence-for-iphone-ipad-and-mac/}},
    note={Dernier accès: 2024-08-26}
}



@BOOK{Freud2010-qq,
  title     = "Le moi et le {\c c}a",
  author    = "Freud, Sigmund",
  publisher = "Payot",
  year      =  2010,
  language  = "fr",
  note={Das Ich und das Es, 1923. Traduction Jean Laplanche}
}

@article{waters2014grade,
  title={Grade: Machine learning support for graduate admissions},
  author={Waters, Austin and Miikkulainen, Risto},
  journal={Ai Magazine},
  volume={35},
  number={1},
  pages={64--64},
  year={2014}
}


@book{rousseau1762contrat,
    title={Du contrat social ou Principes du droit politique},
    author={Rousseau, Jean-Jeacques},
    year={1762}
}

@BOOK{Poundstone1993-jr,
  title     = "Prisoner's Dilemma",
  author    = "Poundstone, William",
  publisher = "Anchor Books",
  month     =  jan,
  year      =  1993,
  address   = "New York, NY"
}


@article{wang2023not,
  title={Do-not-answer: A dataset for evaluating safeguards in llms},
  author={Wang, Yuxia and Li, Haonan and Han, Xudong and Nakov, Preslav and Baldwin, Timothy},
  journal={arXiv preprint arXiv:2308.13387},
  year={2023}
}

@article{bergeaud2023teletravail,
  title={T{\'e}l{\'e}travail et productivit{\'e} avant, pendant et apr{\`e}s la pand{\'e}mie de Covid-19/Telework and Productivity Before, During and After the COVID-19 Crisis},
  author={Bergeaud, Antonin and Cette, Gilbert and Drapala, Simon},
  journal={Economie et Statistique},
  volume={539},
  number={1},
  pages={77--93},
  year={2023},
  publisher={Pers{\'e}e-Portail des revues scientifiques en SHS}
}

@misc{metaverse,
    title={What is the metaverse?},
    author={Meta},
    howpublished={\url{https://about.meta.com/what-is-the-metaverse/}},
    note={Dernier accès: 2024-08-22}
}

@misc{applevision,
    title={Apple vision pro},
    howpublished={\url{https://www.apple.com/apple-vision-pro/}},
    author={Apple},
    note={Dernier accès: 2024-08-22}



@article{johnson2017ai,
  title={AI anxiety},
  author={Johnson, Deborah G and Verdicchio, Mario},
  journal={Journal of the Association for Information Science and Technology},
  volume={68},
  number={9},
  pages={2267--2270},
  year={2017},
  publisher={Wiley Online Library}
}

@misc{afi100,
    title={100 YEARS...100 MOVIES},
    author={AMERICAN FILM INSTITUTE},
    howpublished={\url{https://www.afi.com/afis-100-years-100-movies-10th-anniversary-edition/}},
    note={Dernier accès: 2024-08-21}
}


@article{bernays1928manipulating,
author = {Bernays, Edward L.},
title = {Manipulating Public Opinion: The Why and The How},
journal = {American Journal of Sociology},
volume = {33},
number = {6},
pages = {958-971},
year = {1928},
doi = {10.1086/214599},
URL = { 
    
        https://doi.org/10.1086/214599
},
eprint = { 
    
        https://doi.org/10.1086/214599
}
,
    abstract = { Public opinion, narrowly defined, is the thought of a society at a given time toward a given object; broadly conceived, it is the power of the group to sway the larger public in its attitude. Public opinion can be manipulated, but in teaching the public how to ask for what it wants the manipulator is safeguarding the public against his own possible aggressiveness. The method of the experimental psychologist is not as effective in the study of public opinion in the broad sense as is that of introspective psychology. To create and to change public opinion it is necessary to understand human motives, to know what special interests are represented by a given population, and to realize the function and limitations of the physical organs of approach to the public, such as the radio, the platform, the movie, the letter, the newspaper, etc. If the general principles of swaying public opinion are understood, a technique can be developed which, with the correct appraisal of the specific problem and the specific audience, can and has been used effectively in such widely different situations as changing the attitudes of whites toward Negroes in America, changing the buying habits of American women from felt hats to velvet, silk, and straw hats, changing the impression which the American electorate has of its President, introducing new musical instruments, and a variety of others. Group adherence is essential in changing the attitudes of the public. Authoritative and influential groups may become important channels of reaching the larger public. Ideas and situations must be made impressive and dramatic in order to overcome the inertia of established traditions and prejudices. }
}



@article{fearing1947influence,
author = {Franklin Fearing},
title ={Influence of the Movies on Attitudes and Behavior},

journal = {The ANNALS of the American Academy of Political and Social Science},
volume = {254},
number = {1},
pages = {70-79},
year = {1947},
doi = {10.1177/000271624725400112},

URL = { 
        https://doi.org/10.1177/000271624725400112
},
eprint = { 
        https://doi.org/10.1177/000271624725400112
}
}
@misc{roko,
    title={Solutions to the Altruist's burden: the Quantum Billionaire Trick},
    year={2010},
    author={Roko},
    howpublished={\url{https://rationalwiki.org/wiki/Roko%27s_basilisk/Original_post#Solutions_to_the_Altruist.27s_burden:_the_Quantum_Billionaire_Trick}},
    note={Dernier accès: 2024-08-22}
}
@misc{rokowiki,
    title={Roko's basilisk},
    howpublished={\url{https://old-wiki.lesswrong.com/wiki/Roko%27s_basilisk#Roko's_post}},
    note={Dernier accès: 2024-08-22}
}
@misc{slate,
    title={The Most Terrifying Thought Experiment of All Time},
    author={Auerbach, David},
    howpublished={\url{https://slate.com/technology/2014/07/rokos-basilisk-the-most-terrifying-thought-experiment-of-all-time.html}},
    note={Dernier accès: 2024-08-22}
}
@misc{rokomisc,
    title={A few misconceptions surrounding Roko's basilisk},
    author={Bensinger, Rob}
    howpublished={\url{https://www.lesswrong.com/posts/WBJZoeJypcNRmsdHx/a-few-misconceptions-surrounding-roko-s-basilisk}},
    note={Dernier accès: 2024-08-22}
}

@article{Singler_2018, title={Roko’s Basilisk or Pascal’s? Thinking of Singularity Thought Experiments as Implicit Religion}, volume={20},  url={https://journal.equinoxpub.com/IR/article/view/3226},  DOI={10.1558/imre.35900}, abstractNote={In 2010 a thought experiment speculating on the motivations and aims of a potential superintelligent Artificial Intelligence, sometimes known as the ‘Singularity’, caused uproar and anxiety on the forum board where it was initially posted. This paper considers that thought experiment’s debt to older forms of religious argument, the reactions from among the community, and how expectations about the Singularity as a being with agency can be considered to be an example of implicit religion. This is significant as the thought experiment appeared in a field of research, AI, considered by many to be secular due to its technological focus. The communities under discussion also explicitly express their aim of ‘perfecting’ human rationality, and place that ability in opposition to ‘religion’ as a derided object and the aims of ‘Goddists’ in general. This tension between overt atheism and secular communities’ return to religious tropes and narratives is relevant for the wider study of religion in the contemporary era.}, number={3}, journal={Implicit Religion}, author={Singler, Beth}, year={2018}, month={May}, pages={279–297} }

@misc{matrix,
    title={The Matrix},
    author={Wachowski and Silver and Pope},
    year={1999}
}

@misc{her,
    title={Her},
    author={Jonze, Spike},
    year={2013}
}

@misc{johansson,
    title={Scarlett Johansson’s Statement About Her Interactions With Sam Altman},
    howpublished={\url{https://www.nytimes.com/2024/05/20/technology/scarlett-johansson-openai-statement.html}},
    note={Dernier accès: 2024-08-21}
}


@book{bicentenaire,
    title={The Bicentennial Man},
    author={Asimov,Isaac},
    year={1976},
}


@misc{avenger,
    title={Avengers: Age of Ultron},
    author={ Whedon, Joss and Feige, Kevin},
    year={2015},
    note={Based on the comics by Stan Lee and Jack Kirby}
}
@misc{terminator,
    title={The Terminator},
    author={Cameron, James and Hurd, Gale Anne},
    year={1999}
}

@misc{2001odyssey,
    title={2001: A space odyssey},
    author={Kubrick, Stanley and Clarke, Arthur C. },
    year={1968}
}
@misc{futurama,
    title={Futurama},
    author={Groening, Matt},
    year={2003}
}

@misc{wargames,
    title={War games},
    author={Badham, John and Lasker, Lawrence and Parkes, Walter F. and Schneider,Harold},
    year={1983}
}

@book{assimovIrobot,
    title={I, Robot},
    year={1950},
    author={Isaac Asimov}
}

@book{cornu,
    title={Vocabulaire juridique},
    author={Cornu, Gérard},
    year={2014},
    note={Dixième édition}
}

@article{MARAKAS2000719,
title = {A theoretical model of differential social attributions toward computing technology: when the metaphor becomes the model},
journal = {International Journal of Human-Computer Studies},
volume = {52},
number = {4},
pages = {719-750},
year = {2000},
issn = {1071-5819},
doi = {https://doi.org/10.1006/ijhc.1999.0348},
url = {https://www.sciencedirect.com/science/article/pii/S1071581999903488},
author = {GEORGE M. MARAKAS and RICHARD D. JOHNSON and JONATHAN W. PALMER},
keywords = {anthropomorphism, symbolic computing, social acts, laws of control, computer self-efficiency.},
abstract = {This paper explores the use of metaphorical personification (anthropomorphism) as an aid to describing and understanding the complexities of computing technologies. This common and seemingly intuitive practice (it “reads”, “writes”, “thinks”, “is friendly”, “catches and transmits viruses”, etc.) has become the standard by which we formulate our daily communications, and often our formal training mechanisms, with regard to the technology. Both anecdotal and empirical sources have reported numerous scenarios in which computers have played a noticeably social role, thus being positioned more as a social actor than as a machine or “neutral tool.” In these accounts, human behavior has ranged from making social reference to the device (“It's really much smarter than me,”), to more overt social interactions including conversational interplay and display of common human emotions in response to an interaction. Drawing from behavioral psychology and attribution theory, a theoretical model of the phenomenon is offered from which several propositions are advanced regarding the nature of the behavior, positive and negative implications associated with extended use of this metaphor, and recommendations for research into this ubiquitous social phenomena. … I have encountered these situations before, and in every case they were the result of human error. -HAL 9000 from Arthur C. Clarke's 2001: A Space Odyssey}
}


@article{searle1980minds,
  title={Minds, brains, and programs},
  author={Searle, John R},
  journal={Behavioral and brain sciences},
  volume={3},
  number={3},
  pages={417--424},
  year={1980},
  publisher={Cambridge University Press}
}

@misc{oms,
    title={Rapport de l'Organisation Mondiale de la Santé},
    howpublished={\url{https://www.who.int/fr/news/item/28-06-2021-who-issues-first-global-report-on-ai-in-health-and-six-guiding-principles-for-its-design-and-use}},
    author={OMS},
    year={2021}
}


###############################################
#Synthetic 
@misc{carlini2022membershipinferenceattacksprinciples,
      title={Membership Inference Attacks From First Principles}, 
      author={Nicholas Carlini and Steve Chien and Milad Nasr and Shuang Song and Andreas Terzis and Florian Tramer},
      year={2022},
      eprint={2112.03570},
      archivePrefix={arXiv},
      primaryClass={cs.CR},
      url={https://arxiv.org/abs/2112.03570}, 
}

@article{brayne2015predictive,
  title={Predictive policing},
  author={Brayne, Sarah and Rosenblat, Alex and Boyd, Danah},
  journal={Data \& Civil Rights: A New Era Of Policing And Justice},
  pages={2015--1027},
  year={2015}
}

@inproceedings{barthelemy:hal-01837361,
  TITLE = {{Pl@ntNet, une plate-forme innovante d'agr{\'e}gation et partage d'observations botaniques}},
  AUTHOR = {Barth{\'e}l{\'e}my, Daniel and Boujemaa, Nozha and Molino, Jean-Fran{\c c}ois and Joly, Alexis and Go{\"e}au, Herv{\'e} and Baki{\'c}, Vera and Selmi, Souheil and Champ, Julien and Carre, Jennifer and Chouet, Mathias and Perronnet, Aur{\'e}lien and Vignau, Christelle and Dufour-Kowalski, Samuel and Affouard, Antoine and Barbe, Julien and Bonnet, Pierre},
  URL = {https://hal.science/hal-01837361},
  BOOKTITLE = {{International Conference ‘Botanists of the Twenty-first Century'}},
  ADDRESS = {Paris, France},
  ORGANIZATION = {{UNESCO}},
  HAL_LOCAL_REFERENCE = {DEVMP},
  EDITOR = {No{\"e}line R. Rakotoarisoa and Stephen Blackmore and Bernard Riera},
  PAGES = {191-197},
  YEAR = {2014},
  MONTH = Sep,
  KEYWORDS = {Pl@ntNet ; Botany ; Plateforme participative ; Observations botaniques},
  PDF = {https://hal.science/hal-01837361/file/DB_etal_plantnet_plateforme_2016_1.pdf},
  HAL_ID = {hal-01837361},
  HAL_VERSION = {v1},
}

@misc{plantnet,
    title={Pl@ntNet},
    howpublished={\url{https://identify.plantnet.org/}},
    note={Dernier accès: 2024-07-24}
}


@article{dunn2018wearables,
  title={Wearables and the medical revolution},
  author={Dunn, Jessilyn and Runge, Ryan and Snyder, Michael},
  journal={Personalized medicine},
  volume={15},
  number={5},
  pages={429--448},
  year={2018},
  publisher={Taylor \& Francis}
}

@misc{gtrend,
    title={Google trend Intelligence Artificielle},
    howpublished={\url{https://trends.google.com/trends/explore?date=all&geo=FR&q=intelligence%20artificielle&hl=en-US}},
    note={Dernier accès: 2024-07-24}
}

@misc{france2030,
    title={France 2030},
    howpublished={\url{https://www.info.gouv.fr/grand-dossier/france-2030}},
    note={Dernier accès: 2024-07-24}
}

@misc{stratfr,
    title={La stratégie nationale pour l'intelligence artificielle},
    howpublished={\url{https://www.entreprises.gouv.fr/fr/numerique/enjeux/la-strategie-nationale-pour-l-ia}},
    note={Dernier accès: 2024-07-24}
}

@misc{applewatch,
    title={WatchOS 11 brings powerful health and fitness insights, and even more personalization and connectivity },
    howpublished={\url{https://www.apple.com/newsroom/2024/06/watchos-11-brings-powerful-health-and-fitness-insights/}},
    note={Dernier accès: 2024-07-24}
}

%%%%%%%%%%%CLIMATE CHANGE BACKGROUND
@article{barnes2019viewing,
  title={Viewing forced climate patterns through an AI lens},
  author={Barnes, Elizabeth A and Hurrell, James W and Ebert-Uphoff, Imme and Anderson, Chuck and Anderson, David},
  journal={Geophysical Research Letters},
  volume={46},
  number={22},
  pages={13389--13398},
  year={2019},
  publisher={Wiley Online Library}
}

@article{slater2023hybrid,
  title={Hybrid forecasting: blending climate predictions with AI models},
  author={Slater, Louise J and Arnal, Louise and Boucher, Marie-Am{\'e}lie and Chang, Annie Y-Y and Moulds, Simon and Murphy, Conor and Nearing, Grey and Shalev, Guy and Shen, Chaopeng and Speight, Linda and others},
  journal={Hydrology and earth system sciences},
  volume={27},
  number={9},
  pages={1865--1889},
  year={2023},
  publisher={Copernicus Publications G{\"o}ttingen, Germany}
}

%%%%%%%%%%%%ENERGY BACKGROUND
@article{jin2020energy,
  title={Energy and AI},
  author={Jin, Donghan and Ocone, Raffaella and Jiao, Kui and Xuan, Jin},
  journal={Energy and AI},
  volume={1},
  pages={100002},
  year={2020},
  publisher={Elsevier}
}

@article{kumar2020distributed,
  title={Distributed energy resources and the application of AI, IoT, and blockchain in smart grids},
  author={Kumar, Nallapaneni Manoj and Chand, Aneesh A and Malvoni, Maria and Prasad, Kushal A and Mamun, Kabir A and Islam, FR and Chopra, Shauhrat S},
  journal={Energies},
  volume={13},
  number={21},
  pages={5739},
  year={2020},
  publisher={MDPI}
}

@article{kumari2020blockchain,
  title={Blockchain and AI amalgamation for energy cloud management: Challenges, solutions, and future directions},
  author={Kumari, Aparna and Gupta, Rajesh and Tanwar, Sudeep and Kumar, Neeraj},
  journal={Journal of Parallel and Distributed Computing},
  volume={143},
  pages={148--166},
  year={2020},
  publisher={Elsevier}
}

@article{ngarambe2020use,
  title={The use of artificial intelligence (AI) methods in the prediction of thermal comfort in buildings: Energy implications of AI-based thermal comfort controls},
  author={Ngarambe, Jack and Yun, Geun Young and Santamouris, Mat},
  journal={Energy and Buildings},
  volume={211},
  pages={109807},
  year={2020},
  publisher={Elsevier}
}


%%%%%OPEN AI 

@misc{openaibfm,
    title={OpenAI, cette société qui révolutionne l'intelligence artificielle},
    howpublished={\url{https://www.bfmtv.com/tech/intelligence-artificielle/open-ai-cette-societe-qui-revolutionne-l-intelligence-artificielle_DN-202311200564.html}},
    note={Dernier accès: 2024-07-24}
}

@misc{openaiinter,
    title={Intelligence artificielle : pourquoi Sam Altman, créateur de ChatGPT, a été débarqué d'OpenAI},
    howpublished={\url{https://www.radiofrance.fr/franceinter/ce-que-l-on-sait-du-renvoi-de-sam-altman-patron-d-openai-et-createur-de-chatgpt-5672369}},
    note={Dernier accès: 2024-07-24}
}

@misc{openaint,
    title={OpenAI Says It Has Begun Training a New Flagship A.I. Model},
    howpublished={\url{https://www.nytimes.com/2024/05/28/technology/openai-gpt4-new-model.html}},
    note={Dernier accès: 2024-07-24}
}

@misc{openaibg,
    title={ChatGPT sets record for fastest-growing user base - analyst note},
    howpublished={\url{https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/}},
    note={Dernier accès: 2024-07-24}
}

@misc{gptjournal,
    title={ChatGPT : le quotidien Le Monde signe un partenariat avec OpenAI, une première en France},
    howpublished={\url{https://www.radiofrance.fr/franceinter/podcasts/l-info-de-france-inter/les-doc-france-inter-du-jeudi-14-mars-3-7619379}},
    note={Dernier accès: 2024-07-24}
}

@article{beraja2023ai,
  title={AI-tocracy},
  author={Beraja, Martin and Kao, Andrew and Yang, David Y and Yuchtman, Noam},
  journal={The Quarterly Journal of Economics},
  volume={138},
  number={3},
  pages={1349--1402},
  year={2023},
  publisher={Oxford University Press}
}





@misc{song2020overlearning,
      title={Overlearning Reveals Sensitive Attributes}, 
      author={Congzheng Song and Vitaly Shmatikov},
      year={2020},
      eprint={1905.11742},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

@article{EO,
  author    = {Moritz Hardt and
               Eric Price and
               Nathan Srebro},
  title     = {Equality of Opportunity in Supervised Learning},
  journal   = {CoRR},
  volume    = {abs/1610.02413},
  year      = {2016},
  url       = {http://arxiv.org/abs/1610.02413},
  eprinttype = {arXiv},
  eprint    = {1610.02413},
  timestamp = {Tue, 26 Apr 2022 09:17:17 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/HardtPS16.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

@article{hawkins2004problem,
  title={The problem of overfitting},
  author={Hawkins, Douglas M},
  journal={Journal of chemical information and computer sciences},
  volume={44},
  number={1},
  pages={1--12},
  year={2004},
  publisher={ACS Publications}
}

@misc{yeom,
      title={Privacy Risk in Machine Learning: Analyzing the Connection to Overfitting}, 
      author={Samuel Yeom and Irene Giacomelli and Matt Fredrikson and Somesh Jha},
      year={2018},
      eprint={1709.01604},
      archivePrefix={arXiv},
      primaryClass={cs.CR}
}

@misc{vgg16,
      title={Very Deep Convolutional Networks for Large-Scale Image Recognition}, 
      author={Karen Simonyan and Andrew Zisserman},
      year={2015},
      eprint={1409.1556},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/1409.1556}, 
}
@misc{CGAN,
      title={Conditional Generative Adversarial Nets}, 
      author={Mehdi Mirza and Simon Osindero},
      year={2014},
      eprint={1411.1784},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/1411.1784}, 
}
@ARTICLE{cnn,

  author={Rawat, Waseem and Wang, Zenghui},

  journal={Neural Computation}, 

  title={Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review}, 

  year={2017},

  volume={29},

  number={9},

  pages={2352-2449},

  keywords={},

  doi={10.1162/neco_a_00990}}

@misc{dcgan,
      title={Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks}, 
      author={Alec Radford and Luke Metz and Soumith Chintala},
      year={2016},
      eprint={1511.06434},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/1511.06434}
}
@inproceedings{gan,
author = {Goodfellow, Ian J. and Pouget-Abadie, Jean and Mirza, Mehdi and Xu, Bing and Warde-Farley, David and Ozair, Sherjil and Courville, Aaron and Bengio, Yoshua},
title = {Generative adversarial nets},
year = {2014},
publisher = {MIT Press},
address = {Cambridge, MA, USA},
booktitle = {Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2},
pages = {2672–2680},
numpages = {9},
location = {Montreal, Canada},
series = {NIPS'14}
}
@misc{ctgan,
      title={Modeling Tabular data using Conditional GAN}, 
      author={Lei Xu and Maria Skoularidou and Alfredo Cuesta-Infante and Kalyan Veeramachaneni},
      year={2019},
      eprint={1907.00503},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/1907.00503}, 
}
@article{bellovin2019privacy,
  title={Privacy and synthetic datasets},
  author={Bellovin, Steven M and Dutta, Preetam K and Reitinger, Nathan},
  journal={Stan. Tech. L. Rev.},
  volume={22},
  pages={1},
  year={2019},
  publisher={HeinOnline}
}

@inproceedings{ping2017datasynthesizer,
  title={Datasynthesizer: Privacy-preserving synthetic datasets},
  author={Ping, Haoyue and Stoyanovich, Julia and Howe, Bill},
  booktitle={Proceedings of the 29th International Conference on Scientific and Statistical Database Management},
  pages={1--5},
  year={2017}
}

@inproceedings{kuppa2021towards,
  title={Towards improving privacy of synthetic datasets},
  author={Kuppa, Aditya and Aouad, Lamine and Le-Khac, Nhien-An},
  booktitle={Annual Privacy Forum},
  pages={106--119},
  year={2021},
  organization={Springer}
}

@article{tai2023user,
  title={User-Driven Synthetic Dataset Generation with Quantifiable Differential Privacy},
  author={Tai, Bo-Chen and Tsou, Yao-Tung and Li, Szu-Chuang and Huang, Yennun and Tsai, Pei-Yuan and Tsai, Yu-Cheng},
  journal={IEEE Transactions on Services Computing},
  year={2023},
  publisher={IEEE}
}
@article{stadler2020synthetic,
  title={Synthetic data-A privacy mirage},
  author={Stadler, Theresa and Oprisanu, Bristena and Troncoso, Carmela},
  journal={arXiv preprint arXiv:2011.07018},
  year={2020},
  publisher={Nov}
}

@inproceedings{jordon2021hide,
  title={Hide-and-seek privacy challenge: Synthetic data generation vs. patient re-identification},
  author={Jordon, James and Jarrett, Daniel and Saveliev, Evgeny and Yoon, Jinsung and Elbers, Paul and Thoral, Patrick and Ercole, Ari and Zhang, Cheng and Belgrave, Danielle and van der Schaar, Mihaela},
  booktitle={NeurIPS 2020 Competition and Demonstration Track},
  pages={206--215},
  year={2021},
  organization={PMLR}
}

@inproceedings{abadi2016deep,
  title={Deep learning with differential privacy},
  author={Abadi, Martin and Chu, Andy and Goodfellow, Ian and McMahan, H Brendan and Mironov, Ilya and Talwar, Kunal and Zhang, Li},
  booktitle={Proceedings of the 2016 ACM SIGSAC conference on computer and communications security},
  pages={308--318},
  year={2016}
}

@inproceedings{shokri2017membership,
  title={Membership inference attacks against machine learning models},
  author={Shokri, Reza and Stronati, Marco and Song, Congzheng and Shmatikov, Vitaly},
  booktitle={2017 IEEE symposium on security and privacy (SP)},
  pages={3--18},
  year={2017},
  organization={IEEE}
}

@article{ding2021retiring,
  title={Retiring Adult: New Datasets for Fair Machine Learning},
  author={Ding, Frances and Hardt, Moritz and Miller, John and Schmidt, Ludwig},
  journal={Advances in Neural Information Processing Systems},
  volume={34},
  year={2021}
}

@inproceedings{zhifei2017cvpr,
  title={Age Progression/Regression by Conditional Adversarial Autoencoder},
  author={Zhang, Zhifei and Song, Yang and Qi, Hairong},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2017},
  organization={IEEE}
}