1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
|
@misc{song2020overlearning,
title={Overlearning Reveals Sensitive Attributes},
author={Congzheng Song and Vitaly Shmatikov},
year={2020},
eprint={1905.11742},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
@article{EO,
author = {Moritz Hardt and
Eric Price and
Nathan Srebro},
title = {Equality of Opportunity in Supervised Learning},
journal = {CoRR},
volume = {abs/1610.02413},
year = {2016},
url = {http://arxiv.org/abs/1610.02413},
eprinttype = {arXiv},
eprint = {1610.02413},
timestamp = {Tue, 26 Apr 2022 09:17:17 +0200},
biburl = {https://dblp.org/rec/journals/corr/HardtPS16.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{hawkins2004problem,
title={The problem of overfitting},
author={Hawkins, Douglas M},
journal={Journal of chemical information and computer sciences},
volume={44},
number={1},
pages={1--12},
year={2004},
publisher={ACS Publications}
}
@misc{yeom,
title={Privacy Risk in Machine Learning: Analyzing the Connection to Overfitting},
author={Samuel Yeom and Irene Giacomelli and Matt Fredrikson and Somesh Jha},
year={2018},
eprint={1709.01604},
archivePrefix={arXiv},
primaryClass={cs.CR}
}
@misc{vgg16,
title={Very Deep Convolutional Networks for Large-Scale Image Recognition},
author={Karen Simonyan and Andrew Zisserman},
year={2015},
eprint={1409.1556},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/1409.1556},
}
@misc{CGAN,
title={Conditional Generative Adversarial Nets},
author={Mehdi Mirza and Simon Osindero},
year={2014},
eprint={1411.1784},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/1411.1784},
}
@ARTICLE{cnn,
author={Rawat, Waseem and Wang, Zenghui},
journal={Neural Computation},
title={Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review},
year={2017},
volume={29},
number={9},
pages={2352-2449},
keywords={},
doi={10.1162/neco_a_00990}}
@misc{dcgan,
title={Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks},
author={Alec Radford and Luke Metz and Soumith Chintala},
year={2016},
eprint={1511.06434},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/1511.06434}
}
@inproceedings{gan,
author = {Goodfellow, Ian J. and Pouget-Abadie, Jean and Mirza, Mehdi and Xu, Bing and Warde-Farley, David and Ozair, Sherjil and Courville, Aaron and Bengio, Yoshua},
title = {Generative adversarial nets},
year = {2014},
publisher = {MIT Press},
address = {Cambridge, MA, USA},
booktitle = {Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2},
pages = {2672–2680},
numpages = {9},
location = {Montreal, Canada},
series = {NIPS'14}
}
@misc{ctgan,
title={Modeling Tabular data using Conditional GAN},
author={Lei Xu and Maria Skoularidou and Alfredo Cuesta-Infante and Kalyan Veeramachaneni},
year={2019},
eprint={1907.00503},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/1907.00503},
}
@article{bellovin2019privacy,
title={Privacy and synthetic datasets},
author={Bellovin, Steven M and Dutta, Preetam K and Reitinger, Nathan},
journal={Stan. Tech. L. Rev.},
volume={22},
pages={1},
year={2019},
publisher={HeinOnline}
}
@inproceedings{ping2017datasynthesizer,
title={Datasynthesizer: Privacy-preserving synthetic datasets},
author={Ping, Haoyue and Stoyanovich, Julia and Howe, Bill},
booktitle={Proceedings of the 29th International Conference on Scientific and Statistical Database Management},
pages={1--5},
year={2017}
}
@inproceedings{kuppa2021towards,
title={Towards improving privacy of synthetic datasets},
author={Kuppa, Aditya and Aouad, Lamine and Le-Khac, Nhien-An},
booktitle={Annual Privacy Forum},
pages={106--119},
year={2021},
organization={Springer}
}
@article{tai2023user,
title={User-Driven Synthetic Dataset Generation with Quantifiable Differential Privacy},
author={Tai, Bo-Chen and Tsou, Yao-Tung and Li, Szu-Chuang and Huang, Yennun and Tsai, Pei-Yuan and Tsai, Yu-Cheng},
journal={IEEE Transactions on Services Computing},
year={2023},
publisher={IEEE}
}
@article{stadler2020synthetic,
title={Synthetic data-A privacy mirage},
author={Stadler, Theresa and Oprisanu, Bristena and Troncoso, Carmela},
journal={arXiv preprint arXiv:2011.07018},
year={2020},
publisher={Nov}
}
@inproceedings{jordon2021hide,
title={Hide-and-seek privacy challenge: Synthetic data generation vs. patient re-identification},
author={Jordon, James and Jarrett, Daniel and Saveliev, Evgeny and Yoon, Jinsung and Elbers, Paul and Thoral, Patrick and Ercole, Ari and Zhang, Cheng and Belgrave, Danielle and van der Schaar, Mihaela},
booktitle={NeurIPS 2020 Competition and Demonstration Track},
pages={206--215},
year={2021},
organization={PMLR}
}
@inproceedings{abadi2016deep,
title={Deep learning with differential privacy},
author={Abadi, Martin and Chu, Andy and Goodfellow, Ian and McMahan, H Brendan and Mironov, Ilya and Talwar, Kunal and Zhang, Li},
booktitle={Proceedings of the 2016 ACM SIGSAC conference on computer and communications security},
pages={308--318},
year={2016}
}
@inproceedings{shokri2017membership,
title={Membership inference attacks against machine learning models},
author={Shokri, Reza and Stronati, Marco and Song, Congzheng and Shmatikov, Vitaly},
booktitle={2017 IEEE symposium on security and privacy (SP)},
pages={3--18},
year={2017},
organization={IEEE}
}
@article{ding2021retiring,
title={Retiring Adult: New Datasets for Fair Machine Learning},
author={Ding, Frances and Hardt, Moritz and Miller, John and Schmidt, Ludwig},
journal={Advances in Neural Information Processing Systems},
volume={34},
year={2021}
}
@inproceedings{zhifei2017cvpr,
title={Age Progression/Regression by Conditional Adversarial Autoencoder},
author={Zhang, Zhifei and Song, Yang and Qi, Hairong},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2017},
organization={IEEE}
}
|