1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
|
\begin{thebibliography}{10}
\bibitem{abadi2016deep}
Martin Abadi, Andy Chu, Ian Goodfellow, H~Brendan McMahan, Ilya Mironov, Kunal
Talwar, and Li~Zhang.
\newblock Deep learning with differential privacy.
\newblock In {\em Proceedings of the 2016 ACM SIGSAC conference on computer and
communications security}, pages 308--318, 2016.
\bibitem{bellovin2019privacy}
Steven~M Bellovin, Preetam~K Dutta, and Nathan Reitinger.
\newblock Privacy and synthetic datasets.
\newblock {\em Stan. Tech. L. Rev.}, 22:1, 2019.
\bibitem{ding2021retiring}
Frances Ding, Moritz Hardt, John Miller, and Ludwig Schmidt.
\newblock Retiring adult: New datasets for fair machine learning.
\newblock {\em Advances in Neural Information Processing Systems}, 34, 2021.
\bibitem{gan}
Ian~J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.
\newblock Generative adversarial nets.
\newblock In {\em Proceedings of the 27th International Conference on Neural
Information Processing Systems - Volume 2}, NIPS'14, page 2672–2680,
Cambridge, MA, USA, 2014. MIT Press.
\bibitem{EO}
Moritz Hardt, Eric Price, and Nathan Srebro.
\newblock Equality of opportunity in supervised learning.
\newblock {\em CoRR}, abs/1610.02413, 2016.
\bibitem{hawkins2004problem}
Douglas~M Hawkins.
\newblock The problem of overfitting.
\newblock {\em Journal of chemical information and computer sciences},
44(1):1--12, 2004.
\bibitem{jordon2021hide}
James Jordon, Daniel Jarrett, Evgeny Saveliev, Jinsung Yoon, Paul Elbers,
Patrick Thoral, Ari Ercole, Cheng Zhang, Danielle Belgrave, and Mihaela
van~der Schaar.
\newblock Hide-and-seek privacy challenge: Synthetic data generation vs.
patient re-identification.
\newblock In {\em NeurIPS 2020 Competition and Demonstration Track}, pages
206--215. PMLR, 2021.
\bibitem{cgan}
Mehdi Mirza and Simon Osindero.
\newblock Conditional generative adversarial nets, 2014.
\bibitem{dcgan}
Alec Radford, Luke Metz, and Soumith Chintala.
\newblock Unsupervised representation learning with deep convolutional
generative adversarial networks, 2016.
\bibitem{cnn}
Waseem Rawat and Zenghui Wang.
\newblock Deep convolutional neural networks for image classification: A
comprehensive review.
\newblock {\em Neural Computation}, 29(9):2352--2449, 2017.
\bibitem{shokri2017membership}
Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov.
\newblock Membership inference attacks against machine learning models.
\newblock In {\em 2017 IEEE symposium on security and privacy (SP)}, pages
3--18. IEEE, 2017.
\bibitem{vgg16}
Karen Simonyan and Andrew Zisserman.
\newblock Very deep convolutional networks for large-scale image recognition,
2015.
\bibitem{song2020overlearning}
Congzheng Song and Vitaly Shmatikov.
\newblock Overlearning reveals sensitive attributes, 2020.
\bibitem{stadler2020synthetic}
Theresa Stadler, Bristena Oprisanu, and Carmela Troncoso.
\newblock Synthetic data-a privacy mirage.
\newblock {\em arXiv preprint arXiv:2011.07018}, 2020.
\bibitem{ctgan}
Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni.
\newblock Modeling tabular data using conditional gan, 2019.
\bibitem{yeom}
Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha.
\newblock Privacy risk in machine learning: Analyzing the connection to
overfitting, 2018.
\bibitem{zhifei2017cvpr}
Zhifei Zhang, Yang Song, and Hairong Qi.
\newblock Age progression/regression by conditional adversarial autoencoder.
\newblock In {\em IEEE Conference on Computer Vision and Pattern Recognition
(CVPR)}. IEEE, 2017.
\end{thebibliography}
|