diff options
Diffstat (limited to 'law.py')
-rw-r--r-- | law.py | 163 |
1 files changed, 163 insertions, 0 deletions
@@ -0,0 +1,163 @@ +import math +import numpy as np + +class Law: + def __init__(self, p, m): + self.p = p + self.q = 1-p + self.a = (1-p)*p**m + self.m = m + self.eigen_computed = False + + def eigenvalues(self): + p = self.p + q = self.q + a = self.a + m = self.m + + pol_char = np.zeros(m+2).astype(float) + pol_char[0] = 1 + pol_char[1] = -1 + pol_char[-1] = a + roots = np.roots(pol_char) + roots = roots.reshape(m+1) + self.l = roots + self.eigen_computed = True + + #Finding initial conditions + u = np.zeros(m+1).astype(float) + for n in range(m+1): + u[n] = 1-p**m-n*(1-p)*p**m + I = u[:m+1].reshape(-1,1) + L = np.zeros([m+1,m+1]).astype(np.complex_) + for i in range(m+1): + L[i,:] = roots**(i) + try: + self.c = np.matmul(np.linalg.inv(L),I).reshape(m+1) + except: + self.c = float("nan") + print("pas invers") + + def mass(self, N): + m = self.m + p = self.p + if N<m: + return 0 + elif N==m: + return p**m + elif N<=2*m: + return (1-p)*p**m + else: + return np.real(np.sum(self.c*self.l**(N-2*m-1))*(1-p)*p**m) + + def cdf(self, N): + if not(self.eigen_computed): + self.eigenvalues() + p = self.p + q = self.q + a = self.a + m = self.m + l = self.l + c = self.c + + """P(D<=N)""" + if N<m: + return 0 + elif N<=2*m: + return p**m+(N-m)*(1-p)*p**m + else: + un_sum = np.sum(c*(1-l**(N-2*m))/(1-l)) + return np.real(p**m+m*(1-p)*p**m + (1-p)*p**m*un_sum) + + def cdf_multin(self, N): + """N : nombre de messages""" + P = np.zeros_like(N).astype(float) + for ni,n in enumerate(N): + P[ni] = self.cdf(n) + + return np.mean(P) + + + def cdf_position(self): + self.eigenvalues() + p = self.p + q = self.q + a = self.a + m = self.m + l = self.l + c = self.c + + #cdf start point + s = 0.01 + if self.cdf(m)<0.01: + start = m + else: + x0=2*m+1 + x0=self.mean() + x1 = x0 + #for i in range(1,niter): + #while (np.abs(f(x0,p,m,l,c,s))>1): + while (np.abs(self.cdf(x0)-s)>1): + left = (s-p**m-m*q*p**m)/(q*p**m) + f = np.real(np.sum(c*(1-l**(x0-2*m))/(1-l))) - left + fp = (-1)*np.real(np.sum(c*(l**(x0-2*m)*np.log(l))/(1-l))) + x1 = x0 - f/fp + x0 = x1 + start = x1 + + #cdf end point + s = 0.99 + #x0=2*m+1 + x0=self.mean() + x1 = x0 + i = 0 + + while (np.abs(self.cdf(x1)-s)>0.005): + for i in range(1000): + left = (s-p**m-m*q*p**m)/(q*p**m) + f = np.real(np.sum(c*(1-l**(x0-2*m))/(1-l))) - left + fp = (-1)*np.real(np.sum(c*(l**(x0-2*m)*np.log(l))/(1-l))) + x1 = x0 - f/fp + x0 = x1 + i += 1 + if math.isnan(x1): + x0 = 2*m+1 + x1 = x0 + s = s - 0.1*s + elif (np.abs(self.cdf(x1)-s)>0.005): + s = s - 0.1*s + + end = x1 + + return start, end + + def cdf_inv(self, s): + m = self.m + p = self.p + q = 1-p + c = self.c + l = self.l + x0=2*m+1 + x1 = x0 + i = 0 + + while (np.abs(self.cdf(x1)-s)>0.005): + left = (s-p**m-m*q*p**m)/(q*p**m) + f = np.real(np.sum(c*(1-l**(x0-2*m))/(1-l))) - left + fp = (-1)*np.real(np.sum(c*(l**(x0-2*m)*np.log(l))/(1-l))) + x1 = x0 - f/fp + x0 = x1 + #i += 1 + + return x1 + + + + def mean(self): + m = self.m + p = self.p + q = 1-p + E = 0 + E += m*p**m + q*p**m*(3*m**2+m)/2 + E += q*p**m*(np.sum(self.c*self.l/(1-self.l)**2)+(2*m+1)*np.sum(self.c/(1-self.l))) + return np.real(E) |