summaryrefslogtreecommitdiff
path: root/law.py
blob: 101200ae12f73f382d8809c11bbdc16694136e05 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import math
import numpy as np

class Law:
    def __init__(self, p, m):
        self.p = p
        self.q = 1-p
        self.a = (1-p)*p**m
        self.m = m
        self.eigen_computed = False

    def eigenvalues(self):
        p = self.p 
        q = self.q 
        a = self.a
        m = self.m 

        pol_char = np.zeros(m+2).astype(float)
        pol_char[0] = 1
        pol_char[1] = -1
        pol_char[-1] = a
        roots = np.roots(pol_char)
        roots = roots.reshape(m+1)
        self.l = roots
        self.eigen_computed = True

        #Finding initial conditions
        u = np.zeros(m+1).astype(float)
        for n in range(m+1):
            u[n] = 1-p**m-n*(1-p)*p**m
        I = u[:m+1].reshape(-1,1)
        L = np.zeros([m+1,m+1]).astype(np.complex_)
        for i in range(m+1):
            L[i,:] = roots**(i)
        try:
            self.c = np.matmul(np.linalg.inv(L),I).reshape(m+1)
        except:
            self.c = float("nan")
            print("pas invers")

    def mass(self, N):
        m = self.m
        p = self.p
        if N<m:
            return 0
        elif N==m:
            return p**m
        elif N<=2*m:
            return (1-p)*p**m
        else:
            return np.real(np.sum(self.c*self.l**(N-2*m-1))*(1-p)*p**m)

    def cdf(self, N):
        if not(self.eigen_computed):
            self.eigenvalues()
        p = self.p 
        q = self.q 
        a = self.a
        m = self.m 
        l = self.l
        c = self.c

        """P(D<=N)"""
        if N<m:
            return 0
        elif N<=2*m:
            return p**m+(N-m)*(1-p)*p**m
        else:
            un_sum = np.sum(c*(1-l**(N-2*m))/(1-l))
            return np.real(p**m+m*(1-p)*p**m + (1-p)*p**m*un_sum)

    def cdf_multin(self, N):
        """N : nombre de messages"""
        P = np.zeros_like(N).astype(float)
        for ni,n in enumerate(N):
            P[ni] = self.cdf(n)

        return np.mean(P)


    def cdf_position(self):
        self.eigenvalues()
        p = self.p 
        q = self.q 
        a = self.a
        m = self.m 
        l = self.l
        c = self.c
         
        #cdf start point
        s = 0.01
        if self.cdf(m)<0.01:
            start = m
        else:
            x0=2*m+1
            x0=self.mean()
            x1 = x0
            #for i in range(1,niter):
            #while (np.abs(f(x0,p,m,l,c,s))>1):
            while (np.abs(self.cdf(x0)-s)>1):
                left = (s-p**m-m*q*p**m)/(q*p**m)
                f = np.real(np.sum(c*(1-l**(x0-2*m))/(1-l))) - left
                fp = (-1)*np.real(np.sum(c*(l**(x0-2*m)*np.log(l))/(1-l)))
                x1 = x0 - f/fp
                x0 = x1
            start = x1

        #cdf end point
        s = 0.99
        #x0=2*m+1
        x0=self.mean()
        x1 = x0
        i = 0

        while (np.abs(self.cdf(x1)-s)>0.005):
            for i in range(1000):
                left = (s-p**m-m*q*p**m)/(q*p**m)
                f = np.real(np.sum(c*(1-l**(x0-2*m))/(1-l))) - left
                fp = (-1)*np.real(np.sum(c*(l**(x0-2*m)*np.log(l))/(1-l)))
                x1 = x0 - f/fp
                x0 = x1
                i += 1
            if math.isnan(x1):
                x0 = 2*m+1
                x1 = x0
                s = s - 0.1*s
            elif (np.abs(self.cdf(x1)-s)>0.005):
                s = s - 0.1*s

        end = x1

        return start, end

    def cdf_inv(self, s):
        m = self.m
        p = self.p
        q = 1-p
        c = self.c
        l = self.l
        x0=2*m+1
        x1 = x0
        i = 0

        while (np.abs(self.cdf(x1)-s)>0.005):
                left = (s-p**m-m*q*p**m)/(q*p**m)
                f = np.real(np.sum(c*(1-l**(x0-2*m))/(1-l))) - left
                fp = (-1)*np.real(np.sum(c*(l**(x0-2*m)*np.log(l))/(1-l)))
                x1 = x0 - f/fp
                x0 = x1
                #i += 1

        return x1



    def mean(self):
        m = self.m
        p = self.p
        q = 1-p
        E = 0
        E += m*p**m + q*p**m*(3*m**2+m)/2
        E += q*p**m*(np.sum(self.c*self.l/(1-self.l)**2)+(2*m+1)*np.sum(self.c/(1-self.l)))
        return np.real(E)