summaryrefslogtreecommitdiff
path: root/synthetic/biblio.bib
blob: 6ee7f504bd7e77e4916770088175f5eec43bf5e7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
@misc{carlini2022membershipinferenceattacksprinciples,
      title={Membership Inference Attacks From First Principles}, 
      author={Nicholas Carlini and Steve Chien and Milad Nasr and Shuang Song and Andreas Terzis and Florian Tramer},
      year={2022},
      eprint={2112.03570},
      archivePrefix={arXiv},
      primaryClass={cs.CR},
      url={https://arxiv.org/abs/2112.03570}, 
}

@article{brayne2015predictive,
  title={Predictive policing},
  author={Brayne, Sarah and Rosenblat, Alex and Boyd, Danah},
  journal={Data \& Civil Rights: A New Era Of Policing And Justice},
  pages={2015--1027},
  year={2015}
}

@inproceedings{barthelemy:hal-01837361,
  TITLE = {{Pl@ntNet, une plate-forme innovante d'agr{\'e}gation et partage d'observations botaniques}},
  AUTHOR = {Barth{\'e}l{\'e}my, Daniel and Boujemaa, Nozha and Molino, Jean-Fran{\c c}ois and Joly, Alexis and Go{\"e}au, Herv{\'e} and Baki{\'c}, Vera and Selmi, Souheil and Champ, Julien and Carre, Jennifer and Chouet, Mathias and Perronnet, Aur{\'e}lien and Vignau, Christelle and Dufour-Kowalski, Samuel and Affouard, Antoine and Barbe, Julien and Bonnet, Pierre},
  URL = {https://hal.science/hal-01837361},
  BOOKTITLE = {{International Conference ‘Botanists of the Twenty-first Century'}},
  ADDRESS = {Paris, France},
  ORGANIZATION = {{UNESCO}},
  HAL_LOCAL_REFERENCE = {DEVMP},
  EDITOR = {No{\"e}line R. Rakotoarisoa and Stephen Blackmore and Bernard Riera},
  PAGES = {191-197},
  YEAR = {2014},
  MONTH = Sep,
  KEYWORDS = {Pl@ntNet ; Botany ; Plateforme participative ; Observations botaniques},
  PDF = {https://hal.science/hal-01837361/file/DB_etal_plantnet_plateforme_2016_1.pdf},
  HAL_ID = {hal-01837361},
  HAL_VERSION = {v1},
}

@misc{plantnet,
    title={Pl@ntNet},
    howpublished={\url{https://identify.plantnet.org/}},
    note={Dernier accès: 2024-07-24}
}


@article{dunn2018wearables,
  title={Wearables and the medical revolution},
  author={Dunn, Jessilyn and Runge, Ryan and Snyder, Michael},
  journal={Personalized medicine},
  volume={15},
  number={5},
  pages={429--448},
  year={2018},
  publisher={Taylor \& Francis}
}

@misc{gtrend,
    title={Google trend Intelligence Artificielle},
    howpublished={\url{https://trends.google.com/trends/explore?date=all&geo=FR&q=intelligence%20artificielle&hl=en-US}},
    note={Dernier accès: 2024-07-24}
}

@misc{france2030,
    title={France 2030},
    howpublished={\url{https://www.info.gouv.fr/grand-dossier/france-2030}},
    note={Dernier accès: 2024-07-24}
}

@misc{stratfr,
    title={La stratégie nationale pour l'intelligence artificielle},
    howpublished={\url{https://www.entreprises.gouv.fr/fr/numerique/enjeux/la-strategie-nationale-pour-l-ia}},
    note={Dernier accès: 2024-07-24}
}

@misc{applewatch,
    title={WatchOS 11 brings powerful health and fitness insights, and even more personalization and connectivity },
    howpublished={\url{https://www.apple.com/newsroom/2024/06/watchos-11-brings-powerful-health-and-fitness-insights/}},
    note={Dernier accès: 2024-07-24}
}

%%%%%%%%%%%CLIMATE CHANGE BACKGROUND
@article{barnes2019viewing,
  title={Viewing forced climate patterns through an AI lens},
  author={Barnes, Elizabeth A and Hurrell, James W and Ebert-Uphoff, Imme and Anderson, Chuck and Anderson, David},
  journal={Geophysical Research Letters},
  volume={46},
  number={22},
  pages={13389--13398},
  year={2019},
  publisher={Wiley Online Library}
}

@article{slater2023hybrid,
  title={Hybrid forecasting: blending climate predictions with AI models},
  author={Slater, Louise J and Arnal, Louise and Boucher, Marie-Am{\'e}lie and Chang, Annie Y-Y and Moulds, Simon and Murphy, Conor and Nearing, Grey and Shalev, Guy and Shen, Chaopeng and Speight, Linda and others},
  journal={Hydrology and earth system sciences},
  volume={27},
  number={9},
  pages={1865--1889},
  year={2023},
  publisher={Copernicus Publications G{\"o}ttingen, Germany}
}

%%%%%%%%%%%%ENERGY BACKGROUND
@article{jin2020energy,
  title={Energy and AI},
  author={Jin, Donghan and Ocone, Raffaella and Jiao, Kui and Xuan, Jin},
  journal={Energy and AI},
  volume={1},
  pages={100002},
  year={2020},
  publisher={Elsevier}
}

@article{kumar2020distributed,
  title={Distributed energy resources and the application of AI, IoT, and blockchain in smart grids},
  author={Kumar, Nallapaneni Manoj and Chand, Aneesh A and Malvoni, Maria and Prasad, Kushal A and Mamun, Kabir A and Islam, FR and Chopra, Shauhrat S},
  journal={Energies},
  volume={13},
  number={21},
  pages={5739},
  year={2020},
  publisher={MDPI}
}

@article{kumari2020blockchain,
  title={Blockchain and AI amalgamation for energy cloud management: Challenges, solutions, and future directions},
  author={Kumari, Aparna and Gupta, Rajesh and Tanwar, Sudeep and Kumar, Neeraj},
  journal={Journal of Parallel and Distributed Computing},
  volume={143},
  pages={148--166},
  year={2020},
  publisher={Elsevier}
}

@article{ngarambe2020use,
  title={The use of artificial intelligence (AI) methods in the prediction of thermal comfort in buildings: Energy implications of AI-based thermal comfort controls},
  author={Ngarambe, Jack and Yun, Geun Young and Santamouris, Mat},
  journal={Energy and Buildings},
  volume={211},
  pages={109807},
  year={2020},
  publisher={Elsevier}
}


%%%%%OPEN AI 

@misc{openaibfm,
    title={OpenAI, cette société qui révolutionne l'intelligence artificielle},
    howpublished={\url{https://www.bfmtv.com/tech/intelligence-artificielle/open-ai-cette-societe-qui-revolutionne-l-intelligence-artificielle_DN-202311200564.html}},
    note={Dernier accès: 2024-07-24}
}

@misc{openaiinter,
    title={Intelligence artificielle : pourquoi Sam Altman, créateur de ChatGPT, a été débarqué d'OpenAI},
    howpublished={\url{https://www.radiofrance.fr/franceinter/ce-que-l-on-sait-du-renvoi-de-sam-altman-patron-d-openai-et-createur-de-chatgpt-5672369}},
    note={Dernier accès: 2024-07-24}
}

@misc{openaint,
    title={OpenAI Says It Has Begun Training a New Flagship A.I. Model},
    howpublished={\url{https://www.nytimes.com/2024/05/28/technology/openai-gpt4-new-model.html}},
    note={Dernier accès: 2024-07-24}
}

@misc{openaibg,
    title={ChatGPT sets record for fastest-growing user base - analyst note},
    howpublished={\url{https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/}},
    note={Dernier accès: 2024-07-24}
}

@misc{gptjournal,
    title={ChatGPT : le quotidien Le Monde signe un partenariat avec OpenAI, une première en France},
    howpublished={\url{https://www.radiofrance.fr/franceinter/podcasts/l-info-de-france-inter/les-doc-france-inter-du-jeudi-14-mars-3-7619379}},
    note={Dernier accès: 2024-07-24}
}

@article{beraja2023ai,
  title={AI-tocracy},
  author={Beraja, Martin and Kao, Andrew and Yang, David Y and Yuchtman, Noam},
  journal={The Quarterly Journal of Economics},
  volume={138},
  number={3},
  pages={1349--1402},
  year={2023},
  publisher={Oxford University Press}
}





@misc{song2020overlearning,
      title={Overlearning Reveals Sensitive Attributes}, 
      author={Congzheng Song and Vitaly Shmatikov},
      year={2020},
      eprint={1905.11742},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

@article{EO,
  author    = {Moritz Hardt and
               Eric Price and
               Nathan Srebro},
  title     = {Equality of Opportunity in Supervised Learning},
  journal   = {CoRR},
  volume    = {abs/1610.02413},
  year      = {2016},
  url       = {http://arxiv.org/abs/1610.02413},
  eprinttype = {arXiv},
  eprint    = {1610.02413},
  timestamp = {Tue, 26 Apr 2022 09:17:17 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/HardtPS16.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

@article{hawkins2004problem,
  title={The problem of overfitting},
  author={Hawkins, Douglas M},
  journal={Journal of chemical information and computer sciences},
  volume={44},
  number={1},
  pages={1--12},
  year={2004},
  publisher={ACS Publications}
}

@misc{yeom,
      title={Privacy Risk in Machine Learning: Analyzing the Connection to Overfitting}, 
      author={Samuel Yeom and Irene Giacomelli and Matt Fredrikson and Somesh Jha},
      year={2018},
      eprint={1709.01604},
      archivePrefix={arXiv},
      primaryClass={cs.CR}
}

@misc{vgg16,
      title={Very Deep Convolutional Networks for Large-Scale Image Recognition}, 
      author={Karen Simonyan and Andrew Zisserman},
      year={2015},
      eprint={1409.1556},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/1409.1556}, 
}
@misc{CGAN,
      title={Conditional Generative Adversarial Nets}, 
      author={Mehdi Mirza and Simon Osindero},
      year={2014},
      eprint={1411.1784},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/1411.1784}, 
}
@ARTICLE{cnn,

  author={Rawat, Waseem and Wang, Zenghui},

  journal={Neural Computation}, 

  title={Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review}, 

  year={2017},

  volume={29},

  number={9},

  pages={2352-2449},

  keywords={},

  doi={10.1162/neco_a_00990}}

@misc{dcgan,
      title={Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks}, 
      author={Alec Radford and Luke Metz and Soumith Chintala},
      year={2016},
      eprint={1511.06434},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/1511.06434}
}
@inproceedings{gan,
author = {Goodfellow, Ian J. and Pouget-Abadie, Jean and Mirza, Mehdi and Xu, Bing and Warde-Farley, David and Ozair, Sherjil and Courville, Aaron and Bengio, Yoshua},
title = {Generative adversarial nets},
year = {2014},
publisher = {MIT Press},
address = {Cambridge, MA, USA},
booktitle = {Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2},
pages = {2672–2680},
numpages = {9},
location = {Montreal, Canada},
series = {NIPS'14}
}
@misc{ctgan,
      title={Modeling Tabular data using Conditional GAN}, 
      author={Lei Xu and Maria Skoularidou and Alfredo Cuesta-Infante and Kalyan Veeramachaneni},
      year={2019},
      eprint={1907.00503},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/1907.00503}, 
}
@article{bellovin2019privacy,
  title={Privacy and synthetic datasets},
  author={Bellovin, Steven M and Dutta, Preetam K and Reitinger, Nathan},
  journal={Stan. Tech. L. Rev.},
  volume={22},
  pages={1},
  year={2019},
  publisher={HeinOnline}
}

@inproceedings{ping2017datasynthesizer,
  title={Datasynthesizer: Privacy-preserving synthetic datasets},
  author={Ping, Haoyue and Stoyanovich, Julia and Howe, Bill},
  booktitle={Proceedings of the 29th International Conference on Scientific and Statistical Database Management},
  pages={1--5},
  year={2017}
}

@inproceedings{kuppa2021towards,
  title={Towards improving privacy of synthetic datasets},
  author={Kuppa, Aditya and Aouad, Lamine and Le-Khac, Nhien-An},
  booktitle={Annual Privacy Forum},
  pages={106--119},
  year={2021},
  organization={Springer}
}

@article{tai2023user,
  title={User-Driven Synthetic Dataset Generation with Quantifiable Differential Privacy},
  author={Tai, Bo-Chen and Tsou, Yao-Tung and Li, Szu-Chuang and Huang, Yennun and Tsai, Pei-Yuan and Tsai, Yu-Cheng},
  journal={IEEE Transactions on Services Computing},
  year={2023},
  publisher={IEEE}
}
@article{stadler2020synthetic,
  title={Synthetic data-A privacy mirage},
  author={Stadler, Theresa and Oprisanu, Bristena and Troncoso, Carmela},
  journal={arXiv preprint arXiv:2011.07018},
  year={2020},
  publisher={Nov}
}

@inproceedings{jordon2021hide,
  title={Hide-and-seek privacy challenge: Synthetic data generation vs. patient re-identification},
  author={Jordon, James and Jarrett, Daniel and Saveliev, Evgeny and Yoon, Jinsung and Elbers, Paul and Thoral, Patrick and Ercole, Ari and Zhang, Cheng and Belgrave, Danielle and van der Schaar, Mihaela},
  booktitle={NeurIPS 2020 Competition and Demonstration Track},
  pages={206--215},
  year={2021},
  organization={PMLR}
}

@inproceedings{abadi2016deep,
  title={Deep learning with differential privacy},
  author={Abadi, Martin and Chu, Andy and Goodfellow, Ian and McMahan, H Brendan and Mironov, Ilya and Talwar, Kunal and Zhang, Li},
  booktitle={Proceedings of the 2016 ACM SIGSAC conference on computer and communications security},
  pages={308--318},
  year={2016}
}

@inproceedings{shokri2017membership,
  title={Membership inference attacks against machine learning models},
  author={Shokri, Reza and Stronati, Marco and Song, Congzheng and Shmatikov, Vitaly},
  booktitle={2017 IEEE symposium on security and privacy (SP)},
  pages={3--18},
  year={2017},
  organization={IEEE}
}

@article{ding2021retiring,
  title={Retiring Adult: New Datasets for Fair Machine Learning},
  author={Ding, Frances and Hardt, Moritz and Miller, John and Schmidt, Ludwig},
  journal={Advances in Neural Information Processing Systems},
  volume={34},
  year={2021}
}

@inproceedings{zhifei2017cvpr,
  title={Age Progression/Regression by Conditional Adversarial Autoencoder},
  author={Zhang, Zhifei and Song, Yang and Qi, Hairong},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2017},
  organization={IEEE}
}